We utilize two-color two-dimensional infrared spectroscopy to measure the intermolecular coupling between azide ions and their surrounding water molecules in order to gain information about the nature of hydrogen bonding of water to ions. Our findings indicate that the main spectral contribution to the intermolecular cross-peak comes from population transfer between the asymmetric stretch vibration of azide and the OD-stretch vibration of D2O. The azide-bound D2O bleach/stimulated emission signal, which is spectrally much narrower than its linear absorption spectrum, shows that the experiment is selective to solvation shell water molecules for population times up to ∼500 fs. The waters around the ion are present in an electrostatically better defined environment. Afterwards, ∼1 ps, the sample thermalizes and selectivity is lost. On the other hand, the excited state absorption signal of the azide-bound D2O is much broader. The asymmetry in spectral width between bleach/stimulated emission versus excited absorption has been observed in very much the same way for isotope-diluted ice Ih, where it has been attributed to the anharmonicity of the OD potential.

1.
D.
Kennedy
and
C.
Norman
,
Science
309
,
78
(
2005
).
2.
3.
S.
Combet
and
J.
Zanotti
,
Phys. Chem. Chem. Phys.
14
,
4927
(
2012
).
4.
D.
Zhong
,
S. K.
Pal
, and
A. H.
Zewail
,
Chem. Phys. Lett.
503
,
1
(
2011
).
5.
D.
Laage
and
J. T.
Hynes
,
Science
311
,
832
(
2006
).
6.
D.
Laage
and
J. T.
Hynes
,
J. Phys. Chem. B
112
,
14230
(
2008
).
7.
M.
Ji
,
M.
Odelius
, and
K. J.
Gaffney
,
Science
328
,
1003
(
2010
).
8.
Y. L. A.
Rezus
and
H. J.
Bakker
,
Phys. Rev. Lett.
99
,
148301
(
2007
).
9.
H.
Graener
,
T. Q.
Ye
, and
A.
Laubereau
,
J. Chem. Phys.
90
,
3413
(
1989
).
10.
H.
Graener
,
G.
Seifert
, and
A.
Laubereau
,
Phys. Rev. Lett.
66
,
2092
(
1991
).
11.
H.
Bian
,
H.
Chen
,
J.
Li
,
X.
Wen
, and
J.
Zheng
,
J. Phys. Chem. A
115
,
11657
(
2011
).
12.
P.
Hamm
,
M.
Lin
, and
R.
Hochstrasser
,
Phys. Rev. Lett.
81
,
5326
(
1988
).
13.
H.
Bian
,
X.
Wen
,
J.
Li
,
H.
Chen
,
S.
Han
,
X.
Sun
,
J.
Sing
,
W.
Zhuang
, and
J.
Zheng
,
Proc. Nat. Acad. Sci. U.S.A.
108
,
4737
(
2011
).
14.
M. L.
Cowan
,
B. D.
Bruner
,
N.
Huse
,
J. R.
Dwyer
,
B.
Chugh
,
E. T. J.
Nibbering
,
T.
Elsaesser
, and
R. J. D.
Miller
,
Nature (London)
434
,
199
(
2005
).
15.
L.
Piatkowski
and
H. J.
Bakker
,
J. Chem. Phys.
135
,
214509
(
2011
).
16.
H.
Bian
,
X.
Wen
,
J.
Li
, and
J.
Zheng
,
J. Chem. Phys.
133
,
034505
(
2010
).
17.
A.
Bakulin
,
M.
Pshenichnikov
,
H.
Bakker
, and
C.
Petersen
,
J. Phys. Chem. A
115
,
1821
(
2011
).
18.
J.
Zheng
,
K.
Kwak
,
J.
Asbury
,
X.
Chen
,
I. R.
Piletic
, and
M. D.
Fayer
,
Science
309
,
1338
(
2005
).
19.
L.
Liu
,
J.
Hunger
, and
H. J.
Bakker
,
J. Phys. Chem. A
115
,
14593
(
2011
).
20.
J. B.
Asbury
,
T.
Steinel
, and
M. D.
Fayer
,
J. Phys. Chem. B
108
,
6544
(
2004
).
21.
G. C.
Pimentel
and
A. L.
McClellan
,
The Hydrogen Bond
(
Freeman
,
1960
).
22.
M.
Falk
and
T.
Ford
,
Can. J. Chem.
44
,
1699
(
1966
).
23.
24.
F.
Ding
and
M. T.
Zanni
,
Chem. Phys.
341
,
95
(
2007
).
25.
S.
Garrett-Roe
and
P.
Hamm
,
J. Chem. Phys.
130
,
164510
(
2009
).
26.
S.
Garrett-Roe
,
F.
Perakis
,
F.
Rao
, and
P.
Hamm
,
J. Phys. Chem. B
115
,
6976
(
2011
).
27.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D–IR Spectroscopy
(
(Cambridge University Press
,
Cambridge
,
2011
).
28.
P.
Hamm
,
R. A.
Kaindl
, and
J.
Stenger
,
Opt. Lett.
25
,
1798
(
2000
).
29.
L. P.
DeFlores
,
R. A.
Nicodemus
, and
A.
Tokmakoff
,
Opt. Lett.
32
,
2966
(
2007
).
30.
J.
Helbing
and
P.
Hamm
,
J. Opt. Soc. Am. B
28
,
171
(
2011
).
31.
G.
Brink
and
M.
Falk
,
Can. J. Chem.
48
,
3019
(
1970
).
32.
J.-J.
Max
and
C.
Chapados
,
J. Chem. Phys.
135
,
117102
(
2011
).
33.
M.
Khalil
and
A.
Tokmakoff
,
Chem. Phys.
266
,
213
(
2000
).
34.
G.
Herzberg
, “
Molecular spectra and molecular structure
,” in
Infrared and Raman Spectra of Polyatomic Molecules
, (
Krieger
,
1945
), Vol. II.
35.
S.
Woutersen
,
Y.
Mu
,
G.
Stock
, and
P.
Hamm
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
11254
(
2001
).
36.
M.
Khalil
,
N.
Demirdöven
, and
A.
Tokmakoff
,
J. Chem. Phys.
121
,
362
(
2004
).
37.
H.
Bian
,
J.
Li
,
X.
Wen
, and
J.
Zheng
,
J. Chem. Phys.
132
,
184505
(
2010
).
38.
V. V.
Volkov
,
D. J.
Palmer
, and
R.
Righini
,
J. Phys. Chem. B
111
,
1377
(
2007
).
39.
L.
Piatkowski
,
K. B.
Eisenthal
, and
H. J.
Bakker
,
Phys. Chem. Chem. Phys.
11
,
9033
(
2009
).
40.
M.
Li
,
J. C.
Owrutsky
,
M.
Sarisky
,
J. P.
Culver
,
A.
Yodh
, and
R. M.
Hochstrasser
,
J. Chem. Phys.
98
,
5499
(
1993
).
41.
J. D.
Smith
,
R. J.
Saykally
, and
P. L.
Geissler
,
J. Am. Chem. Soc.
129
,
13847
(
2007
).
42.
K. B.
Moller
,
R.
Rey
, and
J. T.
Hynes
,
J. Phys. Chem. A
108
,
1275
(
2004
).
43.
S.
Li
,
J. R.
Schmidt
,
A.
Piryatinski
,
C. P.
Lawrence
, and
J. L.
Skinner
,
J. Phys. Chem. B
110
,
18933
(
2006
).
44.
S.
Li
,
J. R.
Schmidt
, and
J. L.
Skinner
,
J. Chem. Phys.
125
,
244507
(
2006
).
45.
M. F.
Kropman
and
H. J.
Bakker
,
Chem. Phys. Lett.
370
,
741
(
2003
).
46.
H. J.
Bakker
and
H. K.
Nienhuys
,
Science
297
,
587
(
2002
).
47.
F.
Perakis
,
S.
Widmer
, and
P.
Hamm
,
J. Chem. Phys.
134
,
204505
(
2011
).
48.
G.
Seifert
,
L.
Weidlich
, and
H.
Graener
,
Phys. Rev. B
56
,
14231
(
1997
).
49.
H.
Iglev
,
M.
Schmeisser
,
K.
Simeonidis
,
A.
Thaller
, and
A.
Laubereau
,
Nature (London)
439
,
183
(
2006
).
50.
A. M.
Dokter
and
H. J.
Bakker
,
J. Chem. Phys.
128
,
024502
(
2008
).
51.
E. R.
Lippincott
and
R.
Schroeder
,
J. Chem. Phys.
23
,
1099
(
1955
).
52.
K. J.
Gaffney
,
I. R.
Piletic
, and
M. D.
Fayer
,
J. Phys. Chem. A
106
,
9428
(
2002
).
53.
K. J.
Gaffney
,
P. H.
Davis
,
I. R.
Piletic
,
N. E.
Levinger
, and
M. D.
Fayer
,
J. Phys. Chem. A
106
,
12012
(
2002
).
54.
A. J.
Lock
and
H. J.
Bakker
,
J. Chem. Phys.
117
,
1708
(
2002
).
55.
A.
Pakoulev
,
Z.
Wang
, and
D. D.
Dlott
,
Chem. Phys. Lett.
371
,
594
(
2003
).
56.
H. J.
Bakker
,
A. J.
Lock
, and
D.
Madsen
,
Chem. Phys. Lett.
385
,
329
(
2004
).
57.
S.
Woutersen
and
H. J.
Bakker
,
Nature (London)
402
,
507
(
1999
).
58.
V.
Lenchenkov
,
C.
She
, and
T.
Lian
,
Phys. Chem. B
110
,
19990
(
2006
).
You do not currently have access to this content.