Recently measured photoelectron spectra of the Na3O anion have been interpreted with the aid of ab initio electron propagator calculations. As in the case of the Li3O, we propose that the photoionization of ground and excited neutral states, in a sequential two photon absorption mechanism, plays a role in the interpretation of the observed spectrum. The lowest vertical electron detachment energy of Na3O corresponds to a Dyson orbital that is composed chiefly of diffuse Na s functions and connects a D3h singlet anion to an uncharged species with the same point group. Electron binding energies of isomers of the anion with different point groups or multiplicities have been considered. The relative magnitudes of the ionization energies of the neutral Li3O and Na3O species are also discussed. Whereas the most recent experimental data hold that Na3O has the higher ionization energy, this work asserts the opposite trend.

1.
P. V. R.
Schleyer
,
E. U.
Wuerthwein
, and
J. A.
Pople
,
J. Am. Chem. Soc.
104
,
5839
(
1982
).
2.
G. L.
Gutsev
and
A. I.
Boldyrev
,
Chem. Phys. Lett.
92
,
262
(
1982
).
3.
A. C.
Reber
,
S. N.
Khanna
, and
A. W.
Castleman
,
J. Am. Chem. Soc.
129
,
10189
(
2007
).
4.
P. D.
Dao
,
K. I.
Peterson
, and
A. W.
Castleman
,
J. Chem. Phys.
80
,
563
(
1984
).
5.
D. T.
Vituccio
,
R. F. W.
Herrmann
,
O.
Golonzka
, and
W. E.
Ernst
,
J. Chem. Phys.
106
,
3865
(
1997
).
6.
V. G.
Zakrzewski
,
W.
von Niessen
,
A. I.
Boldyrev
, and
P.
von Ragué Schleyer
,
Chem. Phys. Lett.
197
,
195
(
1992
).
7.
V.
Bonačić-Koutecký
,
J.
Pittner
,
R.
Pou-Amerigo
, and
M.
Hartmann
,
Z. Phys. D: At., Mol. Clusters
40
,
445
(
1997
).
8.
S. D.
Elliott
and
R.
Ahlrichs
,
J. Chem. Phys.
109
,
4267
(
1998
).
9.
O.
Hampe
,
G. M.
Koretsky
,
M.
Gegenheimer
,
C.
Huber
,
M. M.
Kappes
, and
J.
Gauss
,
J. Chem. Phys.
107
,
7085
(
1997
).
10.
E.
Clementi
,
J. Chem. Phys.
47
,
1865
(
1967
).
11.
P. M.
Guyon
and
J.
Berkowitz
,
J. Chem. Phys.
54
,
1814
(
1971
).
12.
E. U.
Wuerthwein
and
P. V. R.
Schleyer
,
J. Am. Chem. Soc.
106
,
6973
(
1984
).
13.
E.
Rehm
,
A. I.
Boldyrev
, and
P. V. R.
Schleyer
,
Inorg. Chem.
31
,
4834
(
1992
).
14.
S.
Zein
and
J. V.
Ortiz
,
J. Chem. Phys.
135
,
164307
(
2011
).
15.
C. H.
Wu
,
H.
Kudo
, and
H. R.
Ihle
,
J. Chem. Phys.
70
,
1815
(
1979
).
16.
P.
Lievens
,
P.
Thoen
,
S.
Bouckaert
,
W.
Bouwen
,
F.
Vanhoutte
,
H.
Weidele
,
R. E.
Silverans
,
A.
Navarro-Vázquez
, and
P. V. R.
Schleyer
,
J. Chem. Phys.
110
,
10316
(
1999
).
17.
D.
Wang
,
J. D.
Graham
,
A. M.
Buytendyk
, and
K. H.
Bowen
,
J. Chem. Phys.
135
,
164308
(
2011
).
18.
J. V.
Ortiz
,
J. Chem. Phys.
104
,
7599
(
1996
).
20.
J. V.
Ortiz
,
Chem. Phys. Lett.
296
,
494
(
1998
).
21.
M. S.
Deleuze
and
S.
Knippenberg
,
J. Chem. Phys.
125
,
104309
(
2006
).
22.
E.
Weigold
and
I. E.
McCarthy
,
Electron Momentum Spectroscopy
(
Kluwer
,
New York
,
1999
).
23.
J.
Itatani
,
J.
Levesque
,
D.
Zeidler
,
H.
Niikura
,
H.
Pepin
,
J. C.
Kieffer
,
P. B.
Corkum
, and
D. M.
Villeneuve
,
Nature
432
,
867
(
2004
).
24.
S.
Patchkovskii
,
Z.
Zhao
,
T.
Brabec
, and
D. M.
Villeneuve
,
Phys. Rev. Lett.
97
,
123003
(
2006
).
25.
M.
Yamazaki
,
T.
Horio
,
N.
Kishimoto
, and
K.
Ohno
,
Phys. Rev. A
75
,
032721
(
2007
).
26.
R.
Flores-Moreno
,
J.
Melin
,
O.
Dolgounitcheva
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
,
Int. J. Quant. Chem.
110
,
706
(
2010
).
27.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 03, Revision B.04, Gaussian, Inc., Wallingford, CT,
2003
.
28.
R. J.
Bartlett
,
J. Phys. Chem.
93
,
1697
(
1989
).
29.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
30.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
31.
M. J.
Frisch
,
J. A.
Pople
, and
J. S.
Binkley
,
J. Chem. Phys.
80
,
3265
(
1984
).
32.
M.
Gutowski
and
J.
Simons
,
J. Phys. Chem.
98
,
8326
(
1994
).
You do not currently have access to this content.