UV-Vis spectra are calculated using time-dependent density functional theory for several organic dyes – 4-(N, N-dimethylamino) benzonitrile, alizarin, squaraine, polyene-linker dyes, oligothiophene-containing coumarin dyes (NKX series) and triphenylamine-donor dyes. Most of these dyes (except, for the first two) or their derivatives are considered to be promising organic dyes for dye-sensitized solar cells. An accurate description of the photophysics of such dyes is imperative for understanding and creating better dyes. To this end, we studied the dyes within several approximations to the exchange-correlation functional. The chosen functionals – PBE, M06L, B3LYP, M06, CAM-B3LYP, and wB97 – represent the various classes of approximations that are currently being used to study material properties. From amongst the six approximations studied here, CAM-B3LYP outperformed the others in its description of charge-transfer excitations in most (though, not all) of the dyes. This study shows why it is difficult to choose a particular functional a priori, especially when starting out with a new dye for solar cell application. A possible way to judge the fitness of an approximation is used in this work and it is shown to provide a good quantitative guideline for subsequent research in this field.

1.
B.
O'Regan
and
M.
Grätzel
,
Nature (London)
353
,
737
(
1991
).
2.
A.
Mishra
,
M. K.
Fischer
, and
P.
Bauerle
,
Angew. Chem., Int. Ed. Engl.
48
,
2474
(
2009
).
3.
A.
Hagfeldt
,
G.
Boschloo
,
L.
Sun
,
L.
Kloo
, and
H.
Pettersson
,
Chem. Rev.
110
,
6595
(
2010
).
4.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
,
J. Chem. Phys.
119
,
2943
(
2003
).
5.
D. J.
Tozer
,
J. Chem. Phys.
119
,
12697
(
2003
).
6.
O.
Gritsenko
and
E. J.
Baerends
,
J. Chem. Phys.
121
,
655
(
2004
).
7.
N. T.
Maitra
,
J. Chem. Phys.
122
,
234104
(
2005
).
8.
J.
Neugebauer
,
O.
Gritsenko
, and
E. J.
Baerends
,
J. Chem. Phys.
124
,
214102
(
2006
).
9.
A.
Dreuw
and
M.
Head-Gordon
,
J. Am. Chem. Soc.
126
,
4007
(
2004
).
10.
A.
Dreuw
and
M.
Head-Gordon
,
Chem. Rev.
105
,
4009
(
2005
).
11.
T. S.
Kuhlman
,
K. V.
Mikkelsen
,
K. B.
Møller
, and
T. I.
Sølling
,
Chem. Phys. Lett.
478
,
127
(
2009
).
12.
B. M.
Wong
and
T. H.
Hsieh
,
J. Chem. Theory Comput.
6
,
3704
(
2010
).
13.
R. M.
Richard
and
J. M.
Herbert
,
J. Chem. Theory Comput.
7
,
1296
(
2011
).
14.
N.
Kuritz
,
T.
Stein
,
R.
Baer
, and
L.
Kronik
,
J. Chem. Theory Comput.
7
,
2408
(
2011
).
15.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
16.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
17.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
18.
P. J.
Stephens
,
F. J.
Devlin
,
C. S.
Ashvar
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
Faraday Discuss.
99
,
103
(
1994
).
19.
M. J. G.
Peach
,
P.
Benfield
,
T.
Helgaker
, and
D. J.
Tozer
,
J. Chem. Phys.
128
,
044118
(
2008
).
20.
D.
Rocca
,
R.
Gebauer
,
F. D.
Angelis
,
M. K.
Nazeeruddin
, and
S.
Baroni
,
Chem. Phys. Lett.
475
,
49
(
2009
).
21.
D. P.
Hagberg
 et al.,
J. Org. Chem.
72
,
9550
(
2007
).
22.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
,
Chem. Phys. Lett.
393
,
51
(
2004
).
23.
J.-D.
Chai
and
M.
Head-Gordon
,
J. Chem. Phys.
128
,
084106
(
2008
).
24.
A. D.
Becke
,
J. Chem. Phys.
107
,
8554
(
1997
).
25.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Phys.
125
,
194101
(
2006
).
26.
Y.
Zhao
and
D.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
27.
Y.
Zhao
and
D. G.
Truhlar
,
Acc. Chem. Res.
41
,
157
(
2008
).
28.
A. D.
Becke
,
J. Chem. Phys.
112
,
4020
(
2000
).
29.
C.
Bulliard
 et al.,
J. Phys. Chem. A
103
,
7766
(
1999
).
30.
C.
Jamorski
,
J. B.
Foresman
, and
C.
Thilgen
, and
H.-P.
Lthi
,
J. Chem. Phys.
116
,
8761
(
2002
).
31.
R.
Huber
,
S.
Spörlein
,
J. E.
Moser
,
M.
Grätzel
, and
J.
Wachtveitl
,
J. Phys. Chem. B
104
,
8995
(
2000
).
32.
J.-H.
Yum
 et al.,
J. Am. Chem. Soc.
129
,
10320
(
2007
).
33.
K.
Hara
 et al.,
Chem. Commun.
2003
,
252
.
34.
K.
Hara
 et al.,
Adv. Funct. Mater.
15
,
246
(
2005
).
35.
K.
Hara
 et al.,
J. Phys. Chem. B
109
,
15476
(
2005
).
36.
W.
Xu
,
B.
Peng
,
J.
Chen
,
M.
Liang
, and
F.
Cai
,
J. Phys. Chem. C
112
,
874
(
2008
).
37.
W.-H.
Liu
 et al.,
Chem. Commun.
2008
,
5152
.
38.
B.-S.
Chen
 et al.,
J. Mater. Chem.
21
,
1937
(
2011
).
39.
S.
Hwang
 et al.,
Chem. Commun.
2007
,
4887
.
40.
See supplementary material at http://dx.doi.org/10.1063/1.4725540 for the structural data of all sixteen molecules. These are optimized geometries and were obtained using the 6-311g** basis set and within the CAM-B3LYP approximation.
41.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN 09 Revision A.02, Gaussian Inc., Wallingford, CT,
2009
.
42.
M.
Cossi
,
N.
Rega
,
G.
Scalmani
, and
V.
Barone
,
J. Comput. Chem.
24
,
669
(
2003
).
43.
S.
Agrawal
,
P.
Dev
,
N. J.
English
,
K. R.
Thampi
, and
J. M. D.
MacElroy
,
Chem. Sci.
3
,
416
(
2012
).
44.
P.
Wiggins
,
J. A. G.
Williams
, and
D. J.
Tozer
,
J. Chem. Phys.
131
,
091101
(
2009
).
45.
D.
Jacquemin
,
V.
Wathelet
,
E. A.
Perpète
, and
C.
Adamo
,
J. Chem. Theory Comput.
5
,
2420
(
2009
).
46.
A.
Fleming
,
S.
Mills
, and
T.
Tuttle
,
Beilstein J. Org. Chem.
7
,
432
(
2011
).
47.
N. C.
Handy
and
A. J.
Cohen
,
Mol. Phys.
99
,
403
(
2001
).
48.
W.-M.
Hoe
,
A. J.
Cohen
, and
N. C.
Handy
,
Chem. Phys. Lett.
341
,
319
(
2001
).
49.
C.
Adamo
and
V.
Barone
,
Chem. Phys. Lett.
274
,
242
(
1997
).
50.
U.
Salzner
and
A.
Aydin
,
J. Chem. Theory Comput.
7
,
2568
(
2011
).
51.
M. E.
Casida
,
Recent Advances in Density Functional Methods (Part I)
, edited by
Delano P.
Chong
(
World Scientific
,
Singapore
,
1995
).
52.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
110
,
13126
(
2006
), PMID: 17149824.
53.
D.
Jacquemin
 et al.,
J. Chem. Theory Comput.
6
,
2071
(
2010
).
54.
R.
Li
,
J.
Zheng
, and
D. G.
Truhlar
,
Phys. Chem. Chem. Phys.
12
,
12697
(
2010
).
55.
Y.
Zhao
and
D. G.
Truhlar
,
Chem. Phys. Lett.
502
,
1
(
2011
).
56.
Y. M.
Rhee
and
M.
Head-Gordon
,
J. Phys. Chem. A
111
,
5314
(
2007
).
57.
M.
Head-Gordon
,
R. J.
Rico
,
M.
Oumi
, and
T. J.
Lee
,
Chem. Phys. Lett.
219
,
21
(
1994
).

Supplementary Material

You do not currently have access to this content.