A small, bimetallic particle in a hydrogen peroxide solution can propel itself by means of an electrocatalytic reaction. The swimming is driven by a flux of ions around the particle. We model this process for the presence of a monovalent salt, where reaction-driven proton currents induce salt ion currents. A theory for thin diffuse layers is employed, which yields nonlinear, coupled transport equations. The boundary conditions include a compact Stern layer of adsorbed ions. Electrochemical processes on the particle surface are modeled with a first order reaction of the Butler-Volmer type. The equations are solved numerically for the swimming speed. An analytical approximation is derived under the assumption that the decomposition of hydrogen peroxide occurs mainly without inducing an electric current. We find that the swimming speed increases linearly with hydrogen peroxide concentration for small concentrations. The influence of ion diffusion on the reaction rate can lead to a concave shape of the function of speed vs. hydrogen peroxide concentration. The compact layer of ions on the particle diminishes the reaction rate and consequently reduces the speed. Our results are consistent with published experimental data.

1.
P.
Mitchell
,
Proc. R. Phys. Soc. Edinb.
25
,
32
(
1956
).
2.
P. E.
Lammert
,
J.
Prost
, and
R.
Bruinsma
,
J. Theor. Biol.
178
,
387
(
1996
).
3.
W. R.
Browne
and
B. L.
Feringa
,
Nat. Nanotechnol.
1
,
25
(
2006
).
4.
S. J.
Ebbens
and
J. R.
Howse
,
Soft Matter
6
,
726
(
2010
).
5.
R. F.
Ismagilov
,
A.
Schwartz
,
N.
Bowden
, and
G. M.
Whitesides
,
Angew. Chem. Int. Ed.
41
,
652
(
2002
).
6.
W. F.
Paxton
,
A.
Sen
, and
T. E.
Mallouk
,
Chem. Eur. J.
11
,
6462
(
2005
).
7.
S.
Fournier-Bidoz
,
A. C.
Arsenault
,
I.
Manners
, and
G. A.
Ozin
,
Chem. Commun. (Cambridge)
2005
,
441
.
8.
J. R.
Howse
,
R. A. L.
Jones
,
A. J.
Ryan
,
T.
Gough
,
R.
Vafabakhsh
, and
R.
Golestanian
,
Phys. Rev. Lett.
99
,
48102
(
2007
).
9.
A.
Erbe
,
M.
Zientara
,
L.
Baraban
,
C.
Kreidler
, and
P.
Leiderer
,
J. Phys.: Condens. Matter
20
,
404215
(
2008
).
10.
N.
Mano
and
A.
Heller
,
J. Am. Chem. Soc.
127
,
11574
(
2005
).
11.
M. M.
Hanczyc
,
T.
Toyota
,
T.
Ikegami
,
N.
Packard
, and
T.
Sugawara
,
J. Am. Chem. Soc.
129
,
9386
(
2007
).
12.
S.
Thutupalli
,
R.
Seemann
, and
S.
Herminghaus
,
New J. Phys.
13
,
073021
(
2011
).
13.
G.
Volpe
,
I.
Buttinoni
,
D.
Vogt
,
H. J.
Kümmerer
, and
C.
Bechinger
,
Soft Matter
7
,
8810
(
2011
).
14.
R.
Golestanian
,
T. B.
Liverpool
, and
A.
Ajdari
,
Phys. Rev. Lett.
94
,
220801
(
2005
).
15.
G.
Rückner
and
R.
Kapral
,
Phys. Rev. Lett.
98
,
150603
(
2007
).
16.
S.
Thakur
and
R.
Kapral
,
J. Chem. Phys.
135
,
024509
(
2011
).
17.
B.
Sabass
and
U.
Seifert
,
Phys. Rev. Lett.
105
,
218103
(
2010
).
18.
B.
Sabass
and
U.
Seifert
,
J. Chem. Phys.
136
,
064508
(
2012
).
19.
G. A.
Ozin
,
I.
Manners
,
S.
Fournier-Bidoz
, and
A.
Arsenault
,
Adv. Mater.
17
,
3011
(
2005
).
20.
T. R.
Kline
,
W. F.
Paxton
,
T.
Mallouk
, and
A.
Sen
,
Angew. Chem.
117
,
754
(
2005
).
21.
S.
Balasubramanian
,
D.
Kagan
,
C.
Jack Hu
,
S.
Campuzano
,
M. J.
Lobo-Castañon
,
N.
Lim
,
D. Y.
Kang
,
M.
Zimmerman
,
L.
Zhang
, and
J.
Wang
,
Angew. Chem. Int. Ed.
50
,
4161
(
2011
).
22.
L.
Baraban
,
M.
Tasinkevych
,
M. N.
Popescu
,
S.
Sanchez
,
S.
Dietrich
, and
O. G.
Schmidt
,
Soft Matter
8
,
48
(
2012
).
23.
R.
Golestanian
,
Phys. Rev. Lett.
102
,
188305
(
2009
).
24.
J.
Palacci
,
C.
Cottin-Bizonne
,
C.
Ybert
, and
L.
Bocquet
,
Phys. Rev. Lett.
105
,
88304
(
2010
).
25.
B.
ten Hagen
,
S.
Van Teeffelen
, and
H.
Löwen
,
J. Phys.: Condens. Matter
23
,
194119
(
2011
).
26.
Y.
Yang
,
V.
Marceau
, and
G.
Gompper
,
Phys. Rev. E
82
,
031904
(
2010
).
27.
G. V.
Kolmakov
,
V. V.
Yashin
,
S. P.
Levitan
, and
A. C.
Balazs
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
12417
(
2010
).
28.
D.
Kagan
,
S.
Balasubramanian
, and
J.
Wang
,
Angew. Chem. Int. Ed.
50
,
503
(
2011
).
29.
J.
Bialké
,
T.
Speck
, and
H.
Löwen
,
Phys. Rev. Lett.
108
,
168301
(
2012
).
30.
S.
Qian
and
S. W.
Joo
,
Langmuir
24
,
4778
(
2008
).
31.
J.
Elgeti
and
G.
Gompper
,
EPL
85
,
38002
(
2009
).
32.
M. N.
Popescu
,
S.
Dietrich
, and
G.
Oshanin
,
J. Chem. Phys.
130
,
194702
(
2009
).
33.
J. L.
Anderson
,
Annu. Rev. Fluid Mech.
21
,
61
(
1989
).
34.
S.
Ebbens
and
J.
Howse
,
Langmuir
27
,
12293
(
2011
).
35.
J.
Vicario
,
R.
Eelkema
,
W. R.
Browne
,
A.
Meetsma
,
R. M.
La Crois
, and
B. L.
Feringa
,
Chem. Commun. (Cambridge)
2005
,
3936
.
36.
J. G.
Gibbs
and
Y. P.
Zhao
,
Appl. Phys. Lett.
94
,
163104
(
2009
).
37.
Y.
Mei
,
A.
Solovev
,
S.
Sanchez
, and
O.
Schmidt
,
Chem. Soc. Rev.
40
,
2109
(
2011
).
38.
B. U.
Felderhof
,
J. Chem. Phys.
133
,
064903
(
2010
).
39.
W. F.
Paxton
,
P. T.
Baker
,
T. R.
Kline
,
Y.
Wang
,
T. E.
Mallouk
, and
A.
Sen
,
J. Am. Chem. Soc.
128
,
14881
(
2006
).
40.
Y.
Wang
,
R. M.
Hernandez
,
D. J.
Bartlett
 Jr.
,
J. M.
Bingham
,
T. R.
Kline
,
A.
Sen
, and
T. E.
Mallouk
,
Langmuir
22
,
10451
(
2006
).
41.
W. F.
Paxton
,
K. C.
Kistler
,
C. C.
Olmeda
,
A.
Sen
,
S. K. St.
Angelo
,
Y.
Cao
,
T. E.
Mallouk
,
P. E.
Lammert
, and
V. H.
Crespi
,
J. Am. Chem. Soc.
126
,
13424
(
2004
).
42.
R.
Laocharoensuk
,
J.
Burdick
, and
J.
Wang
,
ACS Nano
2
,
1069
(
2008
).
43.
S.
Sundararajan
,
P. E.
Lammert
,
A. W.
Zudans
,
V. H.
Crespi
, and
A.
Sen
,
Nano Lett.
8
,
1271
(
2008
).
44.
E.
Yariv
,
Proc. R. Soc. A
467
,
1645
(
2011
).
45.
J. L.
Moran
,
P.
Wheat
, and
J. D.
Posner
,
Phys. Rev. E
81
,
065302
(
2010
).
46.
J. L.
Moran
and
J. D.
Posner
,
J. Fluid Mech.
680
,
31
(
2011
).
47.
D. A.
Saville
,
Annu. Rev. Fluid Mech.
9
,
321
(
1977
).
48.
A. V.
Delgado
,
F.
Gonzalez-Caballero
,
R. J.
Hunter
,
L. K.
Koopal
, and
J.
Lyklema
,
Pure Appl. Chem.
77
,
1753
(
2005
).
49.
M.
Teubner
,
J. Chem. Phys.
76
,
5564
(
1982
).
50.
S. B.
Hall
,
E. A.
Khudaish
, and
A. L.
Hart
,
Electrochim. Acta
43
,
579
(
1997
).
51.
G.
Bianchi
,
F.
Mazza
, and
T.
Mussini
,
Electrochim. Acta
7
,
457
(
1962
).
52.
J.
Newman
and
K.
Thomas-Alyea
,
Electrochemical Systems
(
Wiley-Interscience
,
New York
,
2004
).
53.
A.
Bonnefont
,
F.
Argoul
, and
M. Z.
Bazant
,
J. Electroanal. Chem.
500
,
52
(
2001
).
54.
P. M.
Biesheuvel
,
M.
Van Soestbergen
, and
M. Z.
Bazant
,
Electrochim. Acta
54
,
4857
(
2009
).
55.
R. J.
Hunter
,
L. R.
White
, and
D. Y. C.
Chan
,
Foundations of Colloid Science
(
Clarendon
,
Oxford
,
1987
), Vol. 1.
56.
K. T.
Chu
and
M. Z.
Bazant
,
Phys. Rev. E
74
,
011501
(
2006
).
57.
S. S.
Dukhin
,
E.
Matijevic
, and
B. V.
Derjaguin
,
Surface and Colloid Science
(
Wiley-Interscience
,
New York
,
1974
), Vol. 7.
58.
D. C.
Prieve
,
J. L.
Anderson
,
J. P.
Ebel
, and
M. E.
Lowell
,
J. Fluid Mech.
148
,
247
(
1984
).
59.
H.
Wang
and
L.
Pilon
,
J. Phys. Chem. C
115
,
16711
(
2011
).
61.
F.
Carrique
and
E.
Ruiz-Reina
,
J. Phys. Chem. B
113
,
8613
(
2009
).
62.
C. S.
Mangelsdorf
and
L. R.
White
,
J. Chem. Soc., Faraday Trans.
86
,
2859
(
1990
).
63.
D. C.
Grahame
,
J. Am. Chem. Soc.
76
,
4819
(
1954
).
64.
J. J.
Bikerman
,
Trans. Faraday Soc.
35
,
154
(
1940
).
65.
A.
Ajdari
and
L.
Bocquet
,
Phys. Rev. Lett.
96
,
186102
(
2006
).
66.
A. V.
Belyaev
and
O. I.
Vinogradova
,
Phys. Rev. Lett.
107
,
098301
(
2011
).
67.
Y.
Mukouyama
,
H.
Hommura
,
S.
Nakanishi
,
T.
Nishimura
,
H.
Konishi
, and
Y.
Nakato
,
Bull. Chem. Soc. Jpn.
72
,
1247
(
1999
).
68.
S. B.
Hall
,
E. A.
Khudaish
, and
A. L.
Hart
,
Electrochim. Acta
43
,
2015
(
1998
).
69.
J. P.
Boyd
,
Chebyshev and Fourier Spectral Methods
(
Springer-Verlag
,
New York
,
1989
).
You do not currently have access to this content.