Difluoromethane (CH2F2, HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH2F2, providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm−1. Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm−1 while intensities are predicted within few km mol−1 from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν1⟩, |2ν8⟩, |2ν2⟩ three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400–5000 cm−1 region is also demonstrated by spectacular spectral simulations carried out by using the ro-vibrational Hamiltonian constants, and the relevant coupling terms, obtained from the perturbation treatment of the ab initio anharmonic force field. The present results suggest CH2F2 as a prototype molecule to test ab initio calculations and theoretical models.

1.
T. J.
Wallington
and
O. J.
Nielsen
, in
The Handbook of Environmental Chemistry
, edited by
A. H.
Neilson
(
Springer-Verlag
,
Berlin
,
2002
), Vol. 3N, 85.
2.
H.
Zhang
,
J.
Wu
, and
P.
Lu
,
J. Quant. Spectrosc. Radiat. Transf.
112
,
220
(
2011
).
3.
L. K.
Gohar
,
G.
Myhre
, and
K. P.
Shine
,
J. Geophys. Res.
109
,
D01107
, doi: (
2004
).
4.
A. K.
Jain
,
B. P.
Briegleb
,
K.
Minschwaner
, and
D. J.
Wuebbles
,
J. Geophys. Res.
105
,
D16
, doi: (
2000
);
V.
Naik
,
A. K.
Jain
,
K. O.
Pattern
, and
D. J.
Wuebbles
,
J. Geophys. Res.
105
,
D5
, doi: (
2000
).
5.
S.
Pappasava
,
S.
Tai
,
K. H.
Illinger
, and
J. E.
Kenny
,
J. Geophys. Res.
102
,
13643
, doi: (
1997
).
6.
P.
Blowers
and
K.
Hollingshead
,
J. Phys. Chem. A
113
,
5942
(
2009
).
7.
J. C.
Deroche
,
E. K.
Benichou
, and
G.
Guelachvili
,
Int. J. Infrared Millim. Waves
7
,
1653
(
1986
).
8.
J. C.
Petersen
,
D.
Igner
, and
G.
Duxbury
,
J. Mol. Spectrosc.
100
,
396
(
1983
).
9.
S. C.
Zerbetto
,
E. C. C.
Vasconcellos
,
L. R.
Zink
, and
K. M.
Evenson
,
Int. J. Infrared Millim. Waves
18
,
2301
(
1997
).
10.
D. R.
Lide
 Jr.
,
J. Am. Chem. Soc.
74
,
3548
(
1952
).
11.
E.
Hirota
and
T.
Tanaka
,
J. Mol. Spectrosc.
34
,
222
(
1970
).
12.
L.
Martinache
,
D.
Boucher
,
J.
Demaison
, and
J. C.
Deroche
,
J. Mol. Spectrosc.
119
,
225
(
1986
).
13.
M.
Carlotti
,
G. D.
Nivellini
,
F.
Tullini
, and
B.
Carli
,
J. Mol. Spectrosc.
132
,
158
(
1988
).
14.
H. B.
Stewart
and
H. H.
Nielsen
,
Phys. Rev.
75
,
640
(
1949
).
15.
D. H.
Rank
,
E. R.
Shull
, and
E. L.
Pace
,
J. Chem. Phys.
18
,
885
(
1950
).
16.
I.
Suzuki
and
T.
Shimanouchi
,
J. Mol. Spectrosc.
46
,
130
(
1973
).
17.
V.
Orkin
,
A. G.
Gushin
,
I. K.
Larin
,
R. E.
Huie
, and
M. J.
Kurylo
,
J. Photochem. Photobiol., A
157
,
211
(
2003
).
18.
K.
Smith
,
D.
Newnham
,
M.
Page
,
J.
Ballard
, and
G.
Duxbury
,
J. Quant. Spectrosc. Radiat. Transf.
56
,
73
(
1996
).
19.
E. J.
Highwood
and
K. P.
Shine
,
J. Quant. Spectrosc. Radiat. Transf.
66
,
169
(
2000
).
20.
B.
Henry
and
I-Fu
Hung
,
Chem. Phys.
29
,
465
(
1978
).
21.
R.
Wallace
and
A. A.
Wu
,
Chem. Phys.
39
,
221
(
1979
).
22.
J. F.
Gaw
,
N. C.
Handy
,
P.
Palmieri
, and
A. Degli
Esposti
,
J. Chem. Phys.
89
,
959
(
1988
).
23.
R. D.
Amos
,
N. C.
Handy
,
W. H.
Green
,
D.
Jayatilaka
,
A.
Willets
, and
P.
Palmieri
,
J. Chem. Phys.
95
,
8323
(
1991
).
24.
G.
Fox
and
H. B.
Schlegel
,
J. Chem. Phys.
92
,
4351
(
1990
).
25.
J.
Baker
and
P.
Pulay
,
J. Comput. Chem.
19
,
1187
(
1998
).
26.
H.
Jiang
,
D.
Appadoo
,
E.
Robertson
, and
D.
McNaughton
,
J. Comput. Chem.
23
,
1220
(
2002
).
27.
V.
Barone
,
J.
Bloino
,
C. A.
Guido
, and
F.
Lipparini
,
Chem. Phys. Lett.
496
,
157
(
2010
).
28.
K. M.
Smith
,
G.
Duxbury
,
D. A.
Newnham
, and
J.
Ballard
,
J. Mol. Spectrosc.
193
,
166
(
1999
).
29.
T. J.
Cronin
,
X.
Wang
,
G. A.
Bethardy
, and
D. S.
Perry
,
J. Mol. Spectrosc.
194
,
236
(
1999
).
30.
P. J.
Singh
,
M. N.
Deo
, and
K.
Kawaguchi
,
J. Mol. Spectrosc.
234
,
157
(
2005
).
31.
O. N.
Ulenikov
,
E. S.
Bekhtereva
,
S.
Albert
,
S.
Bauerecker
,
H.
Hollenstein
, and
M.
Quack
,
J. Phys. Chem. A
113
,
2218
(
2009
);
[PubMed]
O. N.
Ulenikov
,
E. S.
Bekhtereva
,
S.
Albert
,
S.
Bauerecker
,
H.
Hollenstein
, and
M.
Quack
,
Mol. Phys.
108
,
1209
(
2010
).
32.
K. J.
Feierabend
,
D. K.
Havey
,
M. E.
Varner
,
J. F.
Stanton
, and
V.
Vaida
,
J. Chem. Phys.
124
,
124323
(
2006
).
33.
I. M.
Konen
,
E. X. J.
Li
,
M. I.
Lester
,
J.
Vázquez
, and
J. F.
Stanton
,
J. Chem. Phys.
125
,
074310
(
2006
);
[PubMed]
I. M.
Konen
,
I. B.
Pollak
,
E. X. J.
Li
,
M. I.
Lester
,
M. E.
Varner
, and
J. F.
Stanton
,
J. Chem. Phys.
122
,
094320
(
2005
).
[PubMed]
34.
H.-R.
Dübal
,
T.-K.
Ha
,
M.
Lewerenz
, and
M.
Quack
,
J. Chem. Phys.
91
,
6698
(
1989
);
H.-R.
Dübal
and
M.
Quack
,
J. Chem. Phys.
81
,
3779
(
1984
).
35.
A. Pietropolli
Charmet
,
N.
Tasinato
,
P.
Stoppa
,
S.
Giorgianni
, and
A.
Gambi
,
Mol. Phys.
109
,
2163
(
2011
).
36.
I. M.
Mills
, in
Molecular Spectroscopy: Modern Research
, edited by
K. Narahari
Rao
and
C. W.
Mathews
(
Academic
,
New York
,
1972
), Vol.
1
, p.
115
.
37.
D.
Papoušek
and
M. R.
Aliev
,
Molecular Vibrational/Rotational Spectra
(
Elsevier
,
Amsterdam
,
1982
).
38.
I. M.
Mills
and
A. G.
Robiette
,
Mol. Phys.
56
,
743
(
1985
).
39.
K. K.
Lehmann
,
Mol. Phys.
66
,
1129
(
1989
);
K. K.
Lehmann
,
Mol. Phys.
erratum
75
,
739
(
1992
).
40.
R. G. D.
Della Valle
,
Mol. Phys.
63
,
611
(
1988
).
41.
M. M.
Law
and
J. L.
Duncan
,
Mol. Phys.
93
,
821
(
1998
).
42.
D. A.
Matthews
,
J.
Vázquez
, and
J. F.
Stanton
,
Mol. Phys.
105
,
2659
(
2007
).
43.
J. M. L.
Martin
and
P. R.
Taylor
,
Spectrochim. Acta A
53
,
1039
(
1997
).
44.
V.
Hänninen
and
L.
Halonen
,
Mol. Phys.
101
,
2907
(
2003
).
45.
A. W.
Willets
,
N. C.
Handy
,
W. H.
Green
 Jr.
, and
D.
Jayatilaka
,
J. Phys. Chem.
94
,
5608
(
1990
).
46.
J.
Vázquez
and
J. F.
Stanton
,
Mol. Phys.
104
,
377
(
2006
).
47.
M.
Biczysko
,
J.
Bloino
,
I.
Carnimeo
,
P.
Panek
, and
V.
Barone
, “
Fully ab initio IR spectra for complex molecular systems from perturbative vibrational approaches: Glycerine as a test case
,”
J. Mol. Struct.
1009
,
74
(
2012
).
48.
J.
Vázquez
and
J. F.
Stanton
,
Mol. Phys.
105
,
101
(
2007
).
49.
J. K. G.
Watson
, in
Vibrational Spectra and Structure
, edited by
J. R.
During
(
Elsevier
,
New York
,
1977
), Vol.
6
, p.
1
.
50.
M.
Ahro
and
J.
Kauppinen
,
Appl. Spectrosc.
55
,
50
(
2001
).
51.
P.
Stoppa
,
A. Pietropolli
Charmet
,
N.
Tasinato
,
S.
Giorgianni
, and
A.
Gambi
,
J. Phys. Chem. A
113
,
1497
(
2009
).
52.
N.
Tasinato
,
A. Pietropolli
Charmet
,
P.
Stoppa
,
S.
Giorgianni
, and
G.
Buffa
,
J. Chem. Phys.
132
,
044315
(
2010
).
53.
G. D.
Purvis
 III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
54.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
55.
T. H.
Dunning
Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
);
D. E.
Woon
and
T. H.
Dunning
Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
);
D. E.
Woon
and
T. H.
Dunning
Jr.
,
J. Chem. Phys.
103
,
4572
(
1995
);
R. A.
Kendall
,
T. H.
Dunning
 Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
56.
J.
Almlöf
and
P. R.
Taylor
,
J. Chem. Phys.
86
,
4070
(
1987
).
57.
E. R.
Jochnowitz
,
M.
Nimlos
,
M. E.
Varner
,
J. F.
Stanton
, and
G. B.
Ellison
,
J. Chem. Phys.
109
,
3812
(
2005
).
58.
N.
Tasinato
,
A. Pietropolli
Charmet
,
P.
Stoppa
,
S.
Giorgianni
, and
A.
Gambi
,
Chem. Phys.
397
,
55
(
2012
).
59.
W.
Schneider
and
W.
Thiel
,
Chem. Phys. Lett.
157
,
367
(
1989
).
60.
J. F.
Stanton
and
J.
Gauss
,
Int. Rev. Chem. Phys.
19
,
61
(
2000
).
61.
J. M. L.
Martin
and
P. R.
Taylor
,
Chem. Phys. Lett.
248
,
336
(
1996
).
62.
CFOUR, a quantum chemical program package written by
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
, and
P. G.
Szalay
with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
L.
Cheng
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
L. A.
Mück
,
D. P.
O’Neill
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
. For the current version, see http://www.cfour.de.
63.
J. F.
Gaw
,
A.
Willets
,
W. H.
Green
, and
N.
Handy
, in
Advances in Molecular Vibrations and Collision Dynamics
, edited by
J. M.
Bowman
(
JAI
,
Greenwich
,
1990
), p.
169
.
64.
J. M.
Martin
,
T. L.
Lee
,
P. R.
Taylor
, and
J.-P.
François
,
J. Chem. Phys.
103
,
2589
(
1995
).
65.
K. L.
Bak
,
J.
Gauss
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
J. F.
Stanton
,
J. Chem. Phys.
114
,
6548
(
2001
).
66.
See supplementary material at http://dx.doi.org/10.1063/1.4720502 for harmonic wavenumbers and intensities (Table S.I), upper state rotational constants (Table S.II) and cross section spectrum (Figure S.1).
67.
A. Pietropolli
Charmet
,
P.
Stoppa
,
N.
Tasinato
,
A.
Baldan
,
S.
Giorgianni
, and
A.
Gambi
,
J. Chem. Phys.
133
,
044310
(
2010
).
68.
A. F.
Borro
,
I. M.
Mills
, and
E.
Venuti
,
J. Chem. Phys.
102
,
3938
(
1995
).
69.
P.-O.
Widmark
,
P.-Å.
Malmqvist
, and
B. O.
Roos
,
Theor. Chim. Acta
77
,
291
(
1990
).
70.
E.
Hirota
,
J. Mol. Spectrosc.
71
,
145
(
1978
).
71.
M. N.
Deo
,
K.
Kawaguchi
, and
R.
D’Cunha
,
J. Mol. Struct.
517-518
,
187
(
2000
).
72.
E.
Hirota
,
J. Mol. Spectrosc.
69
,
409
(
1978
).
73.
S.
Kondo
,
T.
Nakanaga
, and
S.
Saëki
,
J. Chem. Phys.
73
,
5409
(
1980
).
74.
N.
Tasinato
,
P.
Stoppa
,
A. Pietropolli
Charmet
,
S.
Giorgianni
, and
A.
Gambi
,
J. Quant. Spectrosc. Radiat. Transf.
113
,
1240
(
2012
).
75.
M. K.
Bane
,
E. G.
Robertson
,
C. D.
Thompson
,
C.
Medcraft
,
D. R. T.
Appadoo
, and
D.
McNaughton
,
J. Chem. Phys.
134
,
234306
(
2011
).
76.
N.
Tasinato
,
A. Pietropolli
Charmet
, and
P.
Stoppa
,
J. Mol. Spectrosc.
243
,
148
(
2007
).

Supplementary Material

You do not currently have access to this content.