Coarse-grained models of poly(ethylene oxide) oligomer-grafted nanoparticles are established by matching their structural distribution functions to atomistic simulation data. Coarse-grained force fields for bulk oligomer chains show excellent transferability with respect to chain lengths and temperature, but structure and dynamics of grafted nanoparticle systems exhibit a strong dependence on the core-core interactions. This leads to poor transferability of the core potential to conditions different from the state point at which the potential was optimized. Remarkably, coarse graining of grafted nanoparticles can either accelerate or slowdown the core motions, depending on the length of the grafted chains. This stands in sharp contrast to linear polymer systems, for which coarse graining always accelerates the dynamics. Diffusivity data suggest that the grafting topology is one cause of slower motions of the cores for short-chain oligomer-grafted nanoparticles; an estimation based on transition-state theory shows the coarse-grained core-core potential also has a slowing-down effect on the nanoparticle organic hybrid materials motions; both effects diminish as grafted chains become longer.

1.
P.
Agarwal
and
L. A.
Archer
,
Phys. Rev. E
83
,
041402
(
2011
).
2.
J.
Nugent
,
S. S.
Moganty
, and
L. A.
Archer
,
Adv. Mater.
22
,
3677
(
2010
).
3.
K.-Y.
Lin
and
A.-H. A.
Park
,
Environ. Sci. Technol.
45
,
6633
(
2011
).
4.
E.
Hackett
,
E.
Manias
, and
E. P.
Giannelis
,
Chem. Mater.
12
,
2161
(
2000
).
5.
D.
Brown
,
P.
Mélé
,
S.
Marceau
, and
N. D.
Albérola
,
Macromolecules
36
,
1395
(
2003
).
6.
D.
Barbier
,
D.
Brown
,
A.-C.
Grillet
, and
S.
Neyertz
,
Macromolecules
37
,
4695
(
2004
).
7.
D.
Brown
,
V.
Marcadon
,
P.
Mélé
, and
N. D.
Albérola
,
Macromolecules
41
,
1499
(
2008
).
8.
T. V. M.
Ndoro
,
E.
Voyiatzis
,
A.
Ghanbari
,
D. N.
Theodorou
,
M. C.
Böhm
, and
F.
Müller-Plathe
,
Macromolecules
44
,
2316
2327
(
2011
).
9.
B. B.
Hong
and
A. Z.
Pianagiotopoulos
,
J. Phys. Chem. B
116
,
2385
(
2012
).
10.
L.
Khounlavong
,
V.
Pryamitsyn
, and
V.
Ganesan
,
J. Chem. Phys.
133
,
144904
(
2010
).
11.
P. K.
Depa
and
J. K.
Maranas
,
J. Chem. Phys.
126
,
054903
(
2007
).
12.
T. B.
Martin
,
A.
Seifpour
, and
A.
Jayaraman
,
Soft Matter
7
,
5952
(
2011
).
13.
V.
Pryamtisyn
,
V.
Ganesan
,
A. Z.
Panagiotopoulos
,
H. J.
Liu
, and
S. K.
Kumar
,
J. Chem. Phys.
131
,
221102
(
2009
).
14.
Q. H.
Zeng
,
A. B.
Yu
, and
G. Q.
Lu
,
Prog. Polym. Sci.
33
,
191
(
2008
).
15.
J.
Kalb
,
D.
Dukes
,
S. K.
Kumar
,
R. S.
Hoy
, and
G. S.
Grest
,
Soft Matter
7
,
1418
(
2011
).
16.
A.
Chremos
and
A. Z.
Panagiotopoulos
,
Phys. Rev. Lett.
107
,
105503
(
2011
).
17.
A.
Chremos
,
A. Z.
Panagiotopoulos
, and
D. L.
Koch
,
J. Chem. Phys.
136
,
044902
(
2012
).
18.
A.
Chremos
,
A. Z.
Panagiotopoulos
,
H.-Y.
Yu
, and
D. L.
Koch
,
J. Chem. Phys.
135
,
114901
(
2011
).
19.
S.
Goyal
and
F. A.
Escobedo
,
J. Chem. Phys.
135
,
184902
(
2011
).
20.
Y.
Fujii
,
Z. H.
Yang
,
A.
Clough
, and
O. K. C.
Tsui
,
Macromolecules
43
,
4310
(
2010
).
21.
S. T.
Knauert
,
J. F.
Douglas
, and
F. W.
Starr
,
J. Polym. Sci., Part B: Polym. Phys.
45
,
1882
(
2007
).
22.
N.
Lacevic
,
R. H.
Gee
,
A.
Saab
, and
R.
Maxwell
,
J. Chem. Phys.
129
,
124903
(
2008
).
23.
G. D.
Smith
,
D.
Bedrov
,
L.
Li
, and
O.
Byutner
,
J. Chem. Phys.
117
,
9478
(
2002
).
24.
P.
Carbone
,
H. A. K.
Varzaneh
,
X. Y.
Chen
, and
F.
Müller-Plathe
,
J. Chem. Phys.
128
,
064904
(
2008
).
25.
D.
Fritz
,
K.
Koschke
,
V. A.
Harmandaris
,
N. F. A.
vander Vegt
, and
K.
Kremer
,
Phys. Chem. Chem. Phys.
13
,
10412
(
2011
).
26.
P.
Depa
,
C. X.
Chen
, and
J. K.
Maranas
,
J. Chem. Phys.
134
,
014903
(
2011
).
27.
P. K.
Depa
and
J. K.
Maranas
,
J. Chem. Phys.
123
,
094901
(
2005
).
28.
J.
Fischer
,
D.
Paschek
,
A.
Geiger
, and
G.
Sadowski
,
J. Phys. Chem. B
112
,
13561
(
2008
).
29.
H.
Lee
,
A. H.
de Vries
,
S.-J.
Marrink
, and
R. W.
Pastor
,
J. Phys. Chem. B
113
,
13186
(
2009
).
30.
R. M.
Cordeiro
,
F.
Zschunke
, and
F.
Müller-Plathe
,
Macromolecules
143
,
1583
(
2010
).
31.
D.
Bedrov
,
J. Chem. Theory Comput.
2
,
598
(
2006
).
32.
S.
Nielsen
,
C. F.
Lopez
,
G.
Srinivas
, and
M. L.
Klein
,
J. Phys.: Condens. Matter
16
,
R481
(
2004
).
33.
A. F.
Voter
,
Phys. Rev. Lett.
78
,
3908
(
1997
).
34.
C. F.
Lopez
,
S. O.
Nielsen
,
P. B.
Moore
,
J. C.
Shelley
, and
M. L.
Klein
,
J. Phys.: Condens. Matter
14
,
9431
(
2002
).
35.
B. B.
Hong
,
E.
Fernando
, and
A. Z.
Panagiotopoulos
,
J. Chem. Eng. Data
55
,
4273
(
2010
).
37.
D.
Reith
,
M.
Pütz
, and
F.
Müller-Plathe
,
J. Comput. Chem.
24
,
1624
(
2003
).
38.
A. P.
Lyubartsev
and
A.
Laaksonen
,
Phys. Rev. E
52
,
3730
(
1995
).
39.
T.
Murtola
,
A.
Bunker
,
I.
Vattulainen
,
M.
Deserno
, and
M.
Karttunen
,
Phys. Chem. Chem. Phys.
11
,
1869
(
2009
).
40.
M. S.
Shell
,
J. Chem. Phys.
129
,
144108
(
2008
).
41.
A.
Chaimovich
and
M. S.
Shell
,
J. Chem. Phys.
134
,
094112
(
2011
).
42.
F. A.
Escobedo
and
J. J.
de Pablo
,
J. Chem. Phys.
106
,
9858
(
1997
).
43.
C. X.
Chen
,
P.
Depa
,
V. G.
Sakai
,
J. K.
Maranas
,
J. W.
Lynn
,
I.
Peral
, and
J. R.D.
Copley
,
J. Chem. Phys.
124
,
234901
(
2006
).
44.
S. J.
Plimpton
,
J. Comp. Physiol.
117
,
1
(
1995
).
45.
See http://lammps.sandia.gov/ for LAMMPS users manual.
46.
S.
Swier
,
R.
Pieters
, and
B.
van Mele
,
Polymer
43
,
3611
(
2002
).
47.
D.
Brown
,
J. H. R.
Clarke
,
M.
Okuda
, and
T. A.
Yamazaki
,
J. Chem. Phys.
100
,
1684
(
1994
).
48.
V. A.
Harmandaris
and
K.
Kremer
,
Macromolecules
42
,
791
(
2009
).
49.
J. T.
Padding
and
W. J.
Briels
,
J. Phys.: Condens. Matter
23
,
233101
(
2011
).
50.
X. T.
Li
,
Int. J. Numer. Methods Eng.
83
,
986
(
2010
).
51.
I.
Lyubimov
,
Phys. Rev. E
84
,
031801
(
2011
).
You do not currently have access to this content.