The trifluoromethyl radical, CF3, is studied for the first time by means of threshold photoelectron spectroscopy (TPES). The radical is produced in the gas phase using the flash-pyrolysis technique from hexafluoroethane as a precursor. CF3+ total ion yield and mass-selected TPES of the radical are recorded using a spectrometer based upon velocity map imaging and Wiley-McLaren time-of-flight coupled to the synchrotron radiation. The high resolution of the instrument and of the photons allows the observation of rich vibrational progressions in the TPES of CF3. By using Franck-Condon factors computed by Bowman and coworkers, we have been able to simulate the TPES. The initial vibrational temperature of the radical beam has been evaluated at 350 ± 70 K. The structures have been identified as transitions between (n1,n2) and (n1+,n2+) vibrational levels of CF3 and CF3+ with small excitation of the breathing mode, ν1+, and large excitation (n2+ = 10–26) of the umbrella mode, ν2+, in the cation. From the energy separation between the two resolved peaks of each band, a value of 994 ± 16 cm−1 has been derived for the ν1+ breathing frequency of CF3+. For the high-lying n2+ levels, the apparent ν2+ umbrella spacing, 820 ± 14 cm−1, is fairly constant. Taking into account the ν2+ anharmonicity calculated by Bowman and coworkers, we have deduced ν2+ = 809 ± 14 cm−1, and semi-empirical estimations of the adiabatic ionization energy IEad.(CF3) are proposed in good agreement with most of previous works. A value of the vertical ionization potential, IEvert.(CF3) = 11.02 eV, has been derived from the observation of a photoelectron spectrum recorded at a fixed photon energy of 12 eV.

1.
See http://www.epa.gov/highgwp1/scientific.html for information on the global warming potential of perfluorocarbons.
2.
C.
Lifshitz
and
W. A.
Chupka
,
J. Chem. Phys.
47
,
3439
(
1967
).
3.
T. A.
Walter
,
C.
Lifshitz
,
W. A.
Chupka
, and
J.
Berkowitz
,
J. Chem. Phys.
51
,
3531
(
1969
).
4.
I. G.
Simm
and
C. J.
Danby
,
J. Chem. Soc., Faraday Trans. 2
72
,
860
(
1976
).
5.
M.
Tichy
,
G.
Javahery
,
N. D.
Twiddy
, and
E. E.
Ferguson
,
Int. J. Mass Spectrom. Ion Process.
79
,
231
(
1987
).
6.
V.
Tarnovsky
,
P.
Kurunczi
,
D.
Rogozhnikov
, and
K.
Becker
,
Int. J. Mass Spectrom. Ion Process.
128
,
181
(
1993
).
7.
J. T.
Clay
,
E. A.
Walters
,
J. R.
Grover
, and
M. V.
Willcox
,
J. Chem. Phys.
101
,
2069
(
1994
).
8.
K.
Miyata
,
M.
Hori
, and
T.
Goto
,
J. Vac. Sci. Technol. A
14
,
2083
(
1996
).
9.
R. L.
Asher
and
B.
Ruscic
,
J. Chem. Phys.
106
,
210
(
1997
).
10.
G. K.
Jarvis
and
R. P.
Tuckett
,
Chem. Phys. Lett.
295
,
145
(
1998
).
11.
G. A.
Garcia
,
P.-M.
Guyon
, and
I.
Powis
,
J. Phys. Chem. A
105
,
8296
(
2001
).
12.
E. E.
Ferguson
,
T. M.
Miller
, and
A. A.
Viggiano
,
J. Chem. Phys.
118
,
2130
(
2003
).
13.
E. A.
Walters
,
J. T.
Clay
, and
J. R.
Grover
,
J. Phys. Chem. A
109
,
1541
(
2005
).
14.
A. P.
Charmet
,
P.
Stoppa
,
P.
Toninello
,
A.
Baldacci
, and
S.
Giorgianni
,
Phys. Chem. Chem. Phys.
8
,
2491
(
2006
).
15.
H.
Deutsch
,
T. D.
Märk
,
V.
Tarnovsky
,
K.
Becker
,
C.
Cornelissen
,
L.
Cespiva
, and
V.
Bonacic-Koutecky
,
Int. J. Mass Spectrom. Ion Process.
137
,
77
(
1994
).
16.
M.
Horn
,
M.
Oswald
,
R.
Oswald
, and
P.
Botschwina
,
Ber. Bunsenges. Phys. Chem.
99
,
323
(
1995
).
17.
B.
Ruscic
,
J. V.
Michael
,
P. C.
Redfern
,
L. A.
Curtiss
, and
K.
Raghavachari
,
J. Phys. Chem. A
102
,
10889
(
1998
).
18.
A.
Ricca
,
J. Phys. Chem. A
103
,
1876
(
1999
).
19.
P.
Botschwina
,
M.
Horn
,
R.
Oswald
, and
S.
Schmatz
,
J. Electron. Spectrosc. Relat. Phenom.
108
,
109
(
2000
).
20.
A. C.
Olleta
and
S. I.
Lane
,
Phys. Chem. Chem. Phys.
3
,
811
(
2001
).
21.
J. M.
Bowman
,
X.
Huang
,
L. B.
Harding
, and
S.
Carter
,
Mol. Phys.
104
,
33
(
2006
).
22.
Y.-L.
He
and
L.
Wang
,
Struct. Chem.
20
,
461
(
2009
).
23.
J.
Csontos
,
Z.
Rolik
,
S.
Das
, and
M.
Kállay
,
J. Phys. Chem. A
114
,
13093
(
2010
).
24.
D.
Forney
,
M. E.
Jacox
, and
K. K.
Irikura
,
J. Chem. Phys.
101
,
8290
(
1994
).
25.
D. A.
Dixon
,
D.
Feller
, and
G.
Sandrone
,
J. Phys. Chem. A
103
,
4744
(
1999
).
26.
A.
Bodi
,
Á.
Kvaran
, and
B.
Sztáray
,
J. Phys. Chem. A
115
,
13443
(
2011
).
27.
J.
Harvey
,
A.
Bodi
,
R. P.
Tuckett
, and
B.
Sztaray
,
Phys. Chem. Chem. Phys.
14
,
3935
(
2012
).
28.
K. K.
Irikura
,
J. Am. Chem. Soc.
121
,
7689
(
1999
).
29.
See http://www.synchrotronsoleil.fr/portal/page/portal/Recherche/LignesLumiere/DESIRS for general information on the beamline's performance.
30.
L.
Nahon
,
N. D.
Oliveira
,
G. A.
Garcia
,
J.-F.
Gil
,
B.
Pilette
,
O.
Marcouillé
,
B.
Lagarde
, and
F.
Polack
,
J. Synchrotron Radiat.
(to be published).
31.
O.
Marcouille
,
P.
Brunelle
,
O.
Chubar
,
F.
Marteau
,
M.
Massal
,
L.
Nahon
,
K.
Tavakoli
,
J.
Veteran
, and
J. M.
Filhol
, in Synchrotron Radiation Instrumentation, Pts 1 and 2, edited by
J. Y.
Choi
and
S.
Rah
(
AIP
,
New York
,
2007
), Vol. 879, p.
311
.
32.
L.
Nahon
,
C.
Alcaraz
,
J. L.
Marlats
,
B.
Lagarde
,
F.
Polack
,
R.
Thissen
,
D.
Lepère
, and
K.
Ito
,
Rev. Sci. Instrum.
72
,
1320
(
2001
).
33.
B.
Mercier
,
M.
Compin
,
C.
Prevost
,
G.
Bellec
,
R.
Thissen
,
O.
Dutuit
, and
L.
Nahon
,
J. Vac. Sci. Technol. A
18
,
2533
(
2000
).
34.
D. W.
Kohn
,
H.
Clauberg
, and
P.
Chen
,
Rev. Sci. Instrum.
63
,
4003
(
1992
).
35.
M.
Richard-Viard
,
A.
Delboulbe
, and
M.
Vervloet
,
Chem. Phys.
209
,
159
(
1996
).
36.
G. A.
Garcia
,
H.
Soldi-Lose
, and
L.
Nahon
,
Rev. Sci. Instrum.
80
,
023102
(
2009
).
37.
G. K.
Jarvis
,
K. J.
Boyle
,
C. A.
Mayhew
, and
R. P.
Tuckett
,
J. Phys. Chem. A
102
,
3219
(
1998
).
38.
M. G.
Inghram
,
G. R.
Hanson
, and
R.
Stockbauer
,
Int. J. Mass Spectrom. Ion Phys.
33
,
253
(
1980
).
39.
I. P.
Fisher
,
J. B.
Homer
, and
F. P.
Lossing
,
J. Am. Chem. Soc.
87
,
957
(
1965
).
40.
B. K. C.
de Miranda
,
C.
Alcaraz
,
M.
Elhanine
,
B.
Noller
,
P.
Hemberger
,
I.
Fischer
,
G. A.
Garcia
,
H.
Soldi-Lose
,
B.
Gans
,
L. A.
Vieira Mendes
,
S.
Boyé-Péronne
,
S.
Douin
,
J.
Zabka
, and
P.
Botschwina
,
J. Phys. Chem. A
114
,
4818
(
2010
).
41.
B.
Gans
,
L. A. V.
Mendes
,
S.
Boyé-Péronne
,
S.
Douin
,
G.
Garcia
,
H.
Soldi-Lose
,
B. K. C.
de Miranda
,
C.
Alcaraz
,
N.
Carrasco
,
P.
Pernot
, and
D.
Gauyacq
,
J. Phys. Chem. A
114
,
3237
(
2009
).
42.
See supplementary material at http://dx.doi.org/10.1063/1.4719529 for determination of IEvert. from PES, and for an overview of the variation of the simulated intensities of the main vibronic transitions according to the initial temperature of the radical.
43.
J. M.
Bowman
,
S.
Carter
, and
X.
Huang
,
Int. Rev. Phys. Chem.
22
,
533
(
2003
).
44.
T.
Baer
and
P.-M.
Guyon
, in
High Resolution Laser Photoionization and Photoelectron Studies
, edited by
I.
Powis
,
T.
Baer
, and
C.
Ng
(
Wiley
,
Chichester
,
1995
), p.
1
.
45.
N.
Basco
and
F. G. M.
Hathorn
,
Chem. Phys. Lett.
8
,
291
(
1971
).
46.
M.
Suto
and
N.
Washida
,
J. Chem. Phys.
78
,
1012
(
1983
).
47.
N.
Washida
,
M.
Suto
,
S.
Nagase
,
U.
Nagashima
, and
K.
Morokuma
,
J. Chem. Phys.
78
,
1025
(
1983
).
48.
G. A.
Carlson
and
G. C.
Pimentel
,
J. Chem. Phys.
44
,
4053
(
1966
).
49.
C.
Yamada
and
E.
Hirota
,
J. Chem. Phys.
78
,
1703
(
1983
).
50.
B. J.
Bozlee
and
J. W.
Nibler
,
J. Chem. Phys.
84
,
3798
(
1986
).

Supplementary Material

You do not currently have access to this content.