Symmetric and asymmetric triple excitation corrections for the orbital-optimized coupled-cluster doubles (OO-CCD or simply “OD” for short) method are investigated. The conventional symmetric and asymmetric perturbative triples corrections [(T) and (T)Λ] are implemented, the latter one for the first time. Additionally, two new triples corrections, denoted as OD(Λ) and OD(Λ)T, are introduced. We applied the new methods to potential energy surfaces of the BH, HF, C2, N2, and CH4 molecules, and compare the errors in total energies, with respect to full configuration interaction, with those from the standard coupled-cluster singles and doubles (CCSD), with perturbative triples [CCSD(T)], and asymmetric triples correction (CCSD(T)Λ) methods. The CCSD(T) method fails badly at stretched geometries, the corresponding nonparallelity error is 7–281 kcal mol−1, although it gives reliable results near equilibrium geometries. The new symmetric triples correction, CCSD(Λ), noticeably improves upon CCSD(T) (by 4–14 kcal mol−1) for BH, HF, and CH4; however, its performance is worse than CCSD(T) (by 1.6–4.2 kcal mol−1) for C2 and N2. The asymmetric triples corrections, CCSD(T)Λ and CCSD(Λ)T, perform remarkably better than CCSD(T) (by 5–18 kcal mol−1) for the BH, HF, and CH4 molecules, while for C2 and N2 their results are similar to those of CCSD(T). Although the performance of CCSD and OD is similar, the situation is significantly different in the case of triples corrections, especially at stretched geometries. The OD(T) method improves upon CCSD(T) by 1–279 kcal mol−1. The new symmetric triples correction, OD(Λ), enhances the OD(T) results (by 0.01–2.0 kcal mol−1) for BH, HF, and CH4; however, its performance is worse than OD(T) (by 1.9–2.3 kcal mol−1) for C2 and N2. The asymmetric triples corrections, OD(T)Λ and OD(Λ)T, perform better than OD(T) (by 2.0–6.2 kcal mol−1). The latter method is slightly better for the BH, HF, and CH4 molecules. However, for C2 and N2 the new results are similar to those of OD(T). For the BH, HF, and CH4 molecules, OD(Λ)T provides the best potential energy curves among the considered methods, while for C2 and N2 the OD(T) method prevails. Hence, for single-bond breaking the OD(Λ)T method appears to be superior, whereas for multiple-bond breaking the OD(T) method is better.

1.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
2.
G. E.
Scuseria
and
H. F.
Schaefer
,
Chem. Phys. Lett.
142
,
354
(
1987
).
3.
N. C.
Handy
and
H. F.
Schaefer
,
J. Chem. Phys.
81
,
5031
(
1984
).
4.
A. P. L.
Rendell
,
G. B.
Backsay
,
N. S.
Hush
, and
N. C.
Handy
,
J. Chem. Phys.
87
,
5976
(
1987
).
5.
C. D.
Sherrill
,
A. I.
Krylov
,
E. F.C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
4171
(
1998
).
6.
M.
Head-Gordon
and
J. A.
Pople
,
J. Phys. Chem.
92
,
3063
(
1988
).
7.
R. C.
Lochan
and
M.
Head-Gordon
,
J. Chem. Phys.
126
,
164101
(
2007
).
8.
F.
Neese
,
T.
Schwabe
,
S.
Kossmann
,
B.
Schirmer
, and
S.
Grimme
,
J. Chem. Theory Comput.
5
,
3060
(
2009
).
9.
S.
Kossmann
and
F.
Neese
,
J. Phys. Chem. A
114
,
11768
(
2010
).
10.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
,
H. F.
Schaefer
, and
C. D.
Sherrill
,
J. Chem. Phys.
135
,
104103
(
2011
).
11.
S.
Grimme
,
J. Chem. Phys.
118
,
9095
(
2003
).
12.
S.
Grimme
,
J. Comp. Chem.
24
,
1529
(
2003
).
13.
M.
Gerenkamp
and
S.
Grimme
,
Chem. Phys. Lett.
392
,
229
(
2004
).
14.
J.
Antony
and
S.
Grimme
,
J. Phys. Chem. A
111
,
4862
(
2007
).
15.
C. D.
Sherrill
,
Rev. Comput. Chem.
26
,
1
(
2009
).
16.
Y.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
,
J. Chem. Phys.
121
,
9793
(
2004
).
17.
U.
Bozkaya
,
J. Chem. Phys.
135
,
224103
(
2011
).
18.
A.
Köhn
and
J.
Olsen
,
J. Chem. Phys.
122
,
084116
(
2005
).
19.
A. I.
Krylov
,
C. D.
Sherrill
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
10669
(
1998
)
20.
A. I.
Krylov
,
C. D.
Sherrill
, and
M.
Head-Gordon
,
J. Chem. Phys.
113
,
6509
(
2000
).
21.
S. R.
Gwaltney
,
C. D.
Sherrill
,
M.
Head-Gordon
, and
A. I.
Krylov
,
J. Chem. Phys.
113
,
3548
(
2000
).
22.
T. B.
Pedersen
,
H.
Koch
, and
C.
Hättig
,
J. Chem. Phys.
110
,
8318
(
1999
).
23.
T. B.
Pedersen
,
B.
Fernández
, and
H.
Koch
,
J. Chem. Phys.
114
,
6983
(
2001
).
24.
J.
Cizek
,
J. Chem. Phys.
45
,
4256
(
1966
).
25.
R. J.
Bartlett
,
Annu. Rev. Phys. Chem.
32
,
359
(
1981
).
26.
R. J.
Bartlett
,
J. Chem. Phys.
93
,
1697
(
1989
).
27.
R. J.
Bartlett
,
H.
Sekino
, and
G. D.
Purvis
,
Chem. Phys. Lett.
98
,
66
(
1983
).
28.
Y. S.
Lee
,
S. A.
Kucharski
,
R. J.
Bartlett
,
H.
Sekino
, and
G. D.
Purvis
,
J. Chem. Phys.
81
,
5906
(
1984
).
29.
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5968
(
1987
).
30.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
31.
R. J.
Bartlett
,
J. D.
Watts
,
S. A.
Kucharski
, and
J.
Noga
,
Chem. Phys. Lett.
165
,
513
(
1990
).
32.
G. E.
Scuseria
and
T. J.
Lee
,
J. Chem. Phys.
93
,
5851
(
1990
).
33.
G. E.
Scuseria
,
T. P.
Hamilton
, and
H. F.
Schaefer
,
J. Chem. Phys.
91
,
568
(
1990
).
34.
M.
Urban
,
J.
Noga
,
S. J.
Cole
, and
R. J.
Bartlett
,
J. Chem. Phys.
83
,
4041
(
1985
).
35.
T. J.
Lee
and
G. E.
Scuseria
, in
Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy
, edited by
S. R.
Langhoff
(
Kluwer Academic
,
Dordrecht
,
1995
), pp.
47
108
.
36.
J. D.
Watts
,
J. F.
Stanton
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
178
,
471
(
1991
).
37.
G. E.
Scuseria
,
Chem. Phys. Lett.
176
,
27
(
1991
).
38.
J.
Gauss
,
W. J.
Lauderdale
,
J. F.
Stanton
,
J. D.
Watts
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
182
,
207
(
1991
).
39.
J. D.
Watts
and
R. J.
Bartlett
,
J. Chem. Phys.
96
,
6063
(
1992
).
40.
J. R.
Thomas
,
B. J.
DeLeeuw
,
G.
Vacek
,
T. D.
Crawford
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
99
,
403
(
1993
).
41.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
42.
T. D.
Crawford
and
H. F.
Schaefer
,
J. Chem. Phys.
104
,
6259
(
1996
).
43.
T. D.
Crawford
,
T. J.
Lee
, and
H. F.
Schaefer
,
J. Chem. Phys.
107
,
7943
(
1997
).
44.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics
(
Cambridge Press
,
New York
,
2009
), pp.
54
90
.
45.
A. G.
Taube
and
R. J.
Bartlett
,
J. Chem. Phys.
128
,
044110
(
2008
).
46.
S. A.
Kucharski
and
R. J.
Bartlett
,
J. Chem. Phys.
108
,
5243
(
1998
).
47.
T. D.
Crawford
and
J. F.
Stanton
,
Int. J. Quantum Chem.
70
,
601
(
1998
).
48.
A. G.
Taube
and
R. J.
Bartlett
,
J. Chem. Phys.
128
,
044111
(
2008
).
49.
K. A.
Brueckner
,
Phys. Rev.
96
,
508
(
1954
).
50.
R. K.
Nesbet
,
Phys. Rev.
109
,
1632
(
1958
).
51.
R. A.
Chiles
and
C. E.
Dykstra
,
J. Chem. Phys.
74
,
4544
(
1981
).
52.
N. C.
Handy
,
J. A.
Pople
,
M.
Head-Gordon
,
K.
Raghavachari
, and
G. W.
Trucks
,
Chem. Phys. Lett.
164
,
185
(
1989
).
53.
C.
Hampel
,
K. A.
Peterson
, and
H.-J.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1992
).
54.
L. A.
Barnes
and
R.
Lindh
,
Chem. Phys. Lett.
223
,
207
(
1994
).
55.
M.
Musiał
and
R. J.
Bartlett
,
J. Chem. Phys.
133
,
104102
(
2010
).
56.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
113
,
18
(
2000
).
57.
S. R.
Gwaltney
and
M.
Head-Gordon
,
Chem. Phys. Lett.
323
,
21
(
2000
).
58.
S. R.
Gwaltney
and
M.
Head-Gordon
,
J. Chem. Phys.
115
,
2014
(
2001
).
59.
S.
Hirata
,
P.-D.
Fan
,
A. A.
Auer
,
M.
Nooijen
, and
P.
Piecuch
,
J. Chem. Phys.
121
,
12197
(
2004
).
60.
D. I.
Lyakh
,
M.
Musiał
,
V. F.
Lotrich
, and
R. J.
Bartlett
,
Chem. Rev.
112
,
182
(
2012
).
61.
P.
Piecuch
and
M.
Włoch
,
J. Chem. Phys.
123
,
224105
(
2005
).
62.
P.
Piecuch
,
M.
Włoch
,
J. R.
Gour
, and
A.
Kınal
,
Chem. Phys. Lett.
418
,
467
(
2006
).
63.
M.
Włoch
,
M. D.
Lodriguito
,
P.
Piecuch
, and
J. R.
Gour
,
Mol. Phys.
104
,
2149
(
2006
).
64.
M.
Włoch
,
J. R.
Gour
, and
P.
Piecuch
,
J. Phys. Chem. A
111
,
11359
(
2007
).
65.
J. M.
Turney
,
A. C.
Simmonett
,
R. M.
Parrish
,
E. G.
Hohenstein
,
F.
Evangelista
,
J. T.
Fermann
,
B. J.
Mintz
,
L. A.
Burns
,
J. J.
Wilke
,
M. L.
Abrams
,
N. J.
Russ
,
M. L.
Leininger
,
C. L.
Janssen
,
E. T.
Seidl
,
W. D.
Allen
,
H. F.
Schaefer
,
R. A.
King
,
E. F.
Valeev
,
C. D.
Sherrill
, and
T. D.
Crawford
, PSI4, an open-source ab initio electronic structure program, WIREs Comput. Mol. Sci., 2011, additional contributions by
A. E.
DePrince
,
M.
Saitow
,
U.
Bozkaya
,
A. Yu.
Sokolov
.
66.
T. D.
Crawford
,
C. D.
Sherrill
,
E. F.
Valeev
,
J. T.
Fermann
,
R. A.
King
,
M. L.
Leininger
,
S. T.
Brown
,
C. L.
Janssen
,
E. T.
Seidl
,
J. P.
Kenny
, and
W. D.
Allen
,
J. Comput. Chem.
28
,
1610
(
2007
).
67.
Y.
Shao
,
L.
Fusti-Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
DiStasio
,
R. C.
Lochan
,
T.
Wang
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T.
Van Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khaliullin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
, Q-CHEM, Version 3.1, Q-Chem, Inc., Pittsburgh, PA, 2007. Additional authors for Version 3.1:
Z.
Gan
,
Y.
Zhao
,
N. E.
Schultz
,
D.
Truhlar
,
E.
Epifanovsky
and
M.
Oana
. Additional authors for Version 3.2:
R.
Baer
,
B. R.
Brooks
,
D.
Casanova
,
J.-D.
Chai
,
C.-L.
Cheng
,
C.
Cramer
,
D.
Crittenden
,
A.
Ghysels
,
G.
Hawkins
,
E. G.
Hohenstein
,
C.
Kelley
,
W.
Kurlancheek
,
D.
Liotard
,
E.
Livshits
,
P.
Manohar
,
A.
Marenich
,
D.
Neuhauser
,
R.
Olson
,
M. A.
Rohrdanz
,
K. S.
Thanthiriwatte
,
A. J. W.
Thom
,
V.
Vanovschi
,
C. F.
Williams
,
Q.
Wu
, and
Z.-Q.
You
.
68.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
120
,
6841
(
2004
).
69.
M.
Kállay
,
P. G.
Szalay
, and
P. R.
Surjan
,
J. Chem. Phys.
117
,
980
(
2002
).
70.
M.
Kállay
,
J.
Gauss
, and
P. G.
Szalay
,
J. Chem. Phys.
119
,
2991
(
2003
).
71.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
121
,
9257
(
2004
).
72.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
123
,
214105
(
2005
).
73.
CFOUR, a quantum chemical program package written by
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
,
P. G.
Szalay
with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
L.
Cheng
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
D. P.
O’Neill
,
D. R.
Price
,
E.
Prochnow
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
, and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
.
74.
T. D.
Crawford
and
H. F.
Schaefer
,
Rev. Comp. Chem.
14
,
33
(
2000
).
75.
F. E.
Harris
,
H. J.
Monkhorst
, and
D. L.
Freeman
,
Algebraic and Diagrammatic Methods in Many-Fermion Theory
(
Oxford Press
,
New York
,
1992
), pp.
88
118
.
76.
R. J.
Bartlett
and
G. D.
Purvis
,
Int. J. Quantum Chem. Symp.
14
,
561
(
1978
).
77.
T.
Helgaker
and
P.
Jørgensen
,
Adv. Quantum Chem.
19
,
183
(
1988
).
78.
E. A.
Salter
,
G. W.
Trucks
, and
R. J.
Bartlett
,
J. Chem. Phys.
90
,
1752
(
1989
).
79.
J.
Gauss
,
J. F.
Stanton
, and
R. J.
Bartlett
,
J. Chem. Phys.
95
,
2623
(
1991
).
80.
J.
Gauss
and
J. F.
Stanton
,
J. Chem. Phys.
103
,
3561
(
1995
).
81.
J.
Gauss
and
J. F.
Stanton
,
J. Chem. Phys.
116
,
1773
(
2002
).
82.
E.
Dalgaard
and
P.
Jørgensen
,
J. Chem. Phys.
69
,
3833
(
1978
).
83.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic Structure Theory
(
Wiley
,
New York
,
2000
), pp.
86
89
.
84.
R.
Shepard
,
Adv. Chem. Phys.
69
,
63
(
1987
).
85.
R.
Shepard
, in
Modern Electronic Structure Theory Part I
, Advanced Series in Physical Chemistry Vol.
2
, edited by
D. R.
Yarkony
(
World Scientific
,
London
,
1995
), pp.
345
458
.
86.
H.-J.
Werner
,
Adv. Chem. Phys.
69
,
1
(
1987
).
87.
B. O.
Roos
, in
Methods in Computational Molecular Physics
, edited by
G. H. F.
Diercksen
(
Reidel
,
Dordrecht
,
1983
), pp.
161
188
.
88.
C. D.
Sherrill
and
H. F.
Schaefer
,
Adv. Quantum Chem.
34
,
143
(
1999
).
90.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chem. Acc.
28
,
213
(
1973
).
91.
A. D.
McLean
and
G. S.
Chandler
,
J. Chem. Phys.
72
,
5639
(
1980
).
92.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
93.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
94.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
103
,
4572
(
1995
).
95.
S.
Huzinaga
,
J. Chem. Phys.
42
,
1293
(
1965
)
96.
T. H.
Dunning
,
J. Chem. Phys.
53
,
2823
(
1970
).
97.
T. H.
Dunning
, and
P. J.
Hay
, in
Methods of Electronic Structure Theory
, Modern Theoretical Chemistry Vol.
2
, edited by
H. F.
Schaefer
(
Plenum
,
New York
,
1977
), pp.
1
27
.
98.
T. H.
Dunning
,
J. Chem. Phys.
55
,
716
(
1971
).
99.
A.
Dutta
and
C. D.
Sherrill
,
J. Chem. Phys.
118
,
1610
(
2003
).
100.
M. L.
Abrams
and
C. D.
Sherrill
,
J. Chem. Phys.
121
,
9211
(
2004
).
101.
K. P.
Huber
and
G.
Herzberg
,
Molecular Spectra and Molecular Structure
, Constants of Diatomic Molecules Vol.
4
(
Van Nostrand
,
Princeton
,
1979
).
102.
T. J.
Lee
,
J. E.
Rice
,
G. E.
Scuseria
, and
H. F.
Schaefer
,
Theor. Chem. Acc.
75
,
81
(
1989
).
103.
T. J.
Lee
and
P. R.
Taylor
,
Int. J. Quantum Chem. Symp.
23
,
199
(
1989
).
104.
D.
Jayatilaka
and
T. J.
Lee
,
J. Chem. Phys.
98
,
9734
(
1993
).
105.
B. O.
Roos
,
Adv. Chem. Phys.
69
,
399
(
1987
).
106.
H.
Larsen
,
J.
Olsen
,
P.
Jørgensen
, and
O.
Christiansen
,
J. Chem. Phys.
113
,
6677
(
2000
).
You do not currently have access to this content.