We present an identity for an unbiased estimate of a general statistical distribution. The identity computes the distribution density from dividing a histogram sum over a local window by a correction factor from a mean-force integral, and the mean force can be evaluated as a configuration average. We show that the optimal window size is roughly the inverse of the local mean-force fluctuation. The new identity offers a more robust and precise estimate than a previous one by Adib and Jarzynski [J. Chem. Phys.122, 014114 (2005)] https://doi.org/10.1063/1.1829631. It also allows a straightforward generalization to an arbitrary ensemble and a joint distribution of multiple variables. Particularly we derive a mean-force enhanced version of the weighted histogram analysis method. The method can be used to improve distributions computed from molecular simulations. We illustrate the use in computing a potential energy distribution, a volume distribution in a constant-pressure ensemble, a radial distribution function, and a joint distribution of amino acid backbone dihedral angles.

1.
A. B.
Adib
and
C.
Jarzynski
,
J. Chem. Phys.
122
(
1
),
014114
(
2005
).
2.
A. P.
Lyubartsev
,
A. A.
Martsinovski
,
S. V.
Shevkunov
, and
P. N.
Vorontsovvelyaminov
,
J. Chem. Phys.
96
(
3
),
1776
(
1992
);
E.
Marinari
and
G.
Parisi
,
Europhys. Lett.
19
(
6
),
451
(
1992
);
C.
Zhang
and
J.
Ma
,
Phys. Rev. E
76
,
036708
(
2007
).
3.
R. H.
Swendsen
and
J. S.
Wang
,
Phys. Rev. Lett.
57
(
21
),
2607
(
1986
);
[PubMed]
C. J.
Geyer
,
Proceedings of the 23rd Symposium on the Interface
(
American Statistical Association
,
New York
,
1991
);
K.
Hukushima
and
K.
Nemoto
,
J. Phys. Soc. Jpn.
65
(
6
),
1604
(
1996
);
U. H. E.
Hansmann
,
Chem. Phys. Lett.
281
(
1–3
),
140
(
1997
).
4.
5.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
61
(
23
),
2635
(
1988
);
[PubMed]
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
63
(
12
),
1195
(
1989
);
[PubMed]
J. D.
Chodera
,
W. C.
Swope
,
J. W.
Pitera
,
C.
Seok
, and
K. A.
Dill
,
J. Chem. Theory Comput.
3
(
1
),
26
(
2007
);
[PubMed]
J.
Kim
,
T.
Keyes
, and
J. E.
Straub
,
J. Chem. Phys.
135
(
6
),
061103
(
2011
).
[PubMed]
6.
B. D.
Butler
,
G.
Ayton
,
O. G.
Jepps
, and
D. J.
Evans
,
J. Chem. Phys.
109
(
16
),
6519
(
1998
);
O. G.
Jepps
,
G.
Ayton
, and
D. J.
Evans
,
Phys. Rev. E
62
(
4 Pt A
),
4757
(
2000
);
Q.
Yan
and
J. J.
de Pablo
,
Phys. Rev. Lett.
90
(
3
),
035701
(
2003
);
[PubMed]
C.
Braga
and
K. P.
Travisa
,
J. Chem. Phys.
123
,
134101
(
2005
);
[PubMed]
A. B.
Adib
,
Phys. Rev. E
71
(
5 Pt 2
),
056128
(
2005
).
7.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
(
1
),
014101
(
2007
).
8.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C: The Art of Scientific Computing
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1992
).
9.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation from Algorithms to Applications
, 2nd ed. (
Academic
,
2002
).
10.
G. J. M.
Koper
and
H.
Reiss
,
The J. Phys. Chem.
100
(
1
),
422
(
1996
).
11.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W. I.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
12.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J.
Berendsen
,
J. Comput. Chem.
26
(
16
),
1701
(
2005
).
13.
S.
Miyamoto
and
P. A.
Kollman
,
J. Comput. Chem.
13
(
8
),
952
(
1992
).
14.
U.
Essmann
,
L.
Perela
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
15.
J. E.
Basner
and
C.
Jarzynski
,
J. Phys. Chem. B
112
(
40
),
12722
(
2008
).
16.
B. A.
Berg
and
R. C.
Harris
,
Comput. Phys. Commun.
179
,
443
(
2008
);
R.
van Zon
and
J.
Schofield
,
J. Chem. Phys.
132
(
15
),
154110
(
2010
).
[PubMed]
You do not currently have access to this content.