The generalized Fick-Jacobs equation is widely used to study diffusion of Brownian particles in three-dimensional tubes and quasi-two-dimensional channels of varying constraint geometry. We show how this equation can be applied to study the slowdown of unconstrained diffusion in the presence of obstacles. Specifically, we study diffusion of a point Brownian particle in the presence of identical cylindrical obstacles arranged in a square lattice. The focus is on the effective diffusion coefficient of the particle in the plane perpendicular to the cylinder axes, as a function of the cylinder radii. As radii vary from zero to one half of the lattice period, the effective diffusion coefficient decreases from its value in the obstacle free space to zero. Using different versions of the generalized Fick-Jacobs equation, we derive simple approximate formulas, which give the effective diffusion coefficient as a function of the cylinder radii, and compare their predictions with the values of the effective diffusion coefficient obtained from Brownian dynamics simulations. We find that both Reguera-Rubi and Kalinay-Percus versions of the generalized Fick-Jacobs equation lead to quite accurate predictions of the effective diffusion coefficient (with maximum relative errors below 4% and 7%, respectively) over the entire range of the cylinder radii from zero to one half of the lattice period.

1.
R.
Zwanzig
,
J. Phys. Chem.
96
,
3926
(
1992
).
2.
S.
Lifson
and
J. L.
Jackson
,
J. Chem. Phys.
36
,
2410
(
1962
).
3.
J. C.
Maxwell
,
A Treatise on Electricity and Magnetism
(
Dover
,
New York
,
1954
), Vol.
1
.
4.
5.
R.
Landauer
, in
Electrical transport and Optical Properties of Inhomogeneous Media
, edited by
J. C.
Garland
and
D. B.
Tanner
(
AIP
,
New York
,
1978
), p.
2
.
6.
J. R.
Kalnin
,
E. A.
Kotomin
, and
J.
Maier
,
J. Phys. Chem. Solids
63
,
449
(
2002
).
7.
J. B.
Keller
,
J. Appl. Phys.
34
,
991
(
1963
).
8.
J. B.
Keller
,
J. Math. Phys.
5
,
548
(
1964
).
9.
J.
Crank
,
The Mathematics of Diffusion
(
Clarendon Press
,
Oxford
,
1975
).
10.
H. B.
Keller
and
D.
Sachs
,
J. Appl. Phys.
35
,
537
(
1964
).
11.
D.
Holcman
,
N.
Hoze
, and
Z.
Schuss
,
Phys. Rev. E
84
,
021906
(
2011
).
12.
E. A.
Edwards
,
M.
Shapiro
,
H.
Brenner
, and
M.
Shapira
,
Transp. Porous Media
6
,
337
(
1991
).
13.
J.
Frechette
and
G.
Drazer
,
J. Fluid Mech.
627
,
379
(
2009
).
14.
M.
Balvin
,
E.
Sohn
,
T.
Iracki
,
G.
Drazer
, and
J.
Frechette
,
Phys. Rev. Lett.
103
,
078301
(
2009
).
15.
P. K.
Ghosh
,
P.
Hanggi
,
F.
Marchesoni
,
S.
Martens
,
F.
Nori
,
L.
Schimansky-Geier
, and
G.
Schmid
,
Phys. Rev. E
85
,
011101
(
2012
).
16.
A.
Berezhkovskii
and
A.
Szabo
,
J. Chem. Phys.
135
,
074108
(
2011
).
17.
M. H.
Jacobs
,
Diffusion Processes
(
Springer
,
New York
,
1967
).
18.
D.
Reguera
and
J. M.
Rubi
,
Phys. Rev. E
64
,
061106
(
2001
).
19.
P.
Kalinay
and
J. K.
Percus
,
Phys. Rev. E
74
,
041203
(
2006
).
20.
S.
Martens
,
G.
Schmid
,
L.
Schimansky-Geier
, and
P.
Hanggi
,
Phys. Rev. E
83
,
051135
(
2011
).
21.
I.
Pineda
,
M.-V.
Vazquez
,
A. M.
Berezhkovskii
, and
L.
Dagdug
,
J. Chem. Phys.
135
,
224101
(
2011
).
You do not currently have access to this content.