We present a lattice model of oriented, nonrotating, rigid rods in three dimensions with random walk dynamics, computer simulation results for the model, and a theory for the translational diffusion constant of the rods in the perpendicular direction, D, in the semidilute regime. The theory is based on the “tube model” of Doi-Edwards (DE) theory for the rotational diffusion constant of rods that can both translate and rotate in continuous space. The theory predicts that D is proportional to (νL3)−2, where ν is the concentration of rods and L is the length of the rods, which is analogous to the Doi-Edwards scaling law for rotational diffusion. The simulations find that, as νL3 is increased, the approach to the limit of DE scaling is slow, and the −2 power in the DE scaling law is never quite achieved even at the highest concentration (νL3 = 200) simulated. We formulate a quantitative theory for the prefactor in the scaling relationship using only DE ideas, but it predicts a proportionality constant that is much too small. To explain this discrepancy, we modify the DE approach to obtain a more accurate estimate of the average tube radius and take into account effects of perpendicular motion of rods that are not included in the original DE theory. With these changes, the theory predicts values of D that are in much better agreement with the simulations. We propose a new scaling relationship that fits the data very well. This relationship suggests that the DE scaling law is the correct description of the scaling for infinitely thin rods only in the limit of infinite concentration, and that corrections to the DE scaling law because of finite concentration are significant even at concentrations that are well inside the semidilute regime. The implications of these results for the DE theory of rotating rods are discussed.

1.
L.
Onsager
,
Ann. N. Y. Acad. Sci.
51
,
627
(
1949
).
2.
R.
Zwanzig
,
J. Chem. Phys.
39
,
1714
(
1963
).
4.
M.
Doi
and
S. F.
Edwards
,
J. Chem. Soc., Faraday Trans. 2
74
,
560
(
1978
).
5.
M.
Doi
and
S. F.
Edwards
,
J. Chem. Soc., Faraday Trans. 2
74
,
918
(
1978
).
6.
M.
Doi
,
J. Polym. Sci., Polym. Phys. Ed.
19
,
229
(
1981
).
7.
M.
Doi
,
I.
Yamamoto
, and
F.
Kano
,
J. Phys. Soc. Jpn.
53
,
3000
(
1984
).
8.
P. G.
de Gennes
,
J. Chem. Phys.
55
,
572
(
1971
).
9.
M.
Doi
and
S. F.
Edwards
,
The Theory Of Polymer Dynamics
(
Oxford University Press
,
Oxford
,
1986
).
10.
R.
Pecora
,
J. Polym. Sci., Polym. Symp.
73
,
83
(
1985
).
11.
J. F.
Maguire
,
J. P.
McTague
, and
F.
Rondelez
,
Phys. Rev. Lett.
45
,
1891
(
1980
);
J. F.
Maguire
,
J. P.
McTague
, and
F.
Rondelez
,
Phys. Rev. Lett.
47
,
148
(
1981
).
12.
S.
Highsmith
,
C.
Wang
,
K.
Zero
,
R.
Pecora
, and
O.
Jardetzky
,
Biochemistry
21
,
1192
(
1982
).
13.
K. M.
Zero
and
R.
Pecora
,
Macromolecules
15
,
87
(
1982
).
14.
K.
Kubota
and
B.
Chu
,
Biopolymers
22
,
1461
(
1983
).
15.
J. A.
Odell
,
E. D. T.
Atkins
, and
A.
Keller
,
J. Polym. Sci., Polym. Lett. Ed.
21
,
289
(
1983
).
16.
Y.
Mori
,
N.
Ookubo
,
R.
Hayakawa
, and
Y.
Wada
,
J. Polym. Sci., Polym. Phys. Ed.
20
,
2111
(
1982
).
17.
S.
Jain
and
C.
Cohen
,
Macromolecules
14
,
759
(
1981
).
18.
S.
Fesciyan
and
J. S.
Dahler
,
Macromolecules
15
,
517
(
1982
).
19.
J.
Dahler
and
S.
Fesciyan
,
Macromolecules
16
,
1673
(
1983
).
20.
21.
S. F.
Edwards
and
K. E.
Evans
,
J. Chem. Soc.
78
,
113
(
1982
).
22.
G.
Marrucci
and
N.
Grizzuti
,
J. Rheol.
27
,
433
(
1983
).
23.
G. T.
Keep
and
R.
Pecora
,
Macromolecules
18
,
1167
(
1985
).
24.
I.
Teraoka
,
N.
Oocubo
, and
R.
Hayakawa
,
Phys. Rev. Lett.
55
,
2712
(
1985
).
25.
T.
Sato
and
A.
Teramoto
,
Adv. Polym. Sci.
126
,
85
(
1996
).
27.
I.
Bitsanis
,
H. T.
Davis
, and
M.
Tirrell
,
Macromolecules
21
,
2824
(
1988
).
28.
I.
Bitsanis
,
H. T.
Davis
, and
M.
Tirrell
,
Macromolecules
23
,
1157
(
1990
).
30.
P. D.
Cobb
and
J. E.
Butler
,
J. Chem. Phys.
123
,
054908
(
2005
).
31.
V.
Pryamitsyn
and
V.
Ganesan
,
J. Chem. Phys.
128
,
134901
(
2008
).
33.
G.
Szamel
and
K. S.
Schweizer
,
J. Chem. Phys.
100
,
3127
(
1994
).
34.
K.
Miyazaki
and
A.
Yethiraj
,
J. Chem. Phys.
117
,
10448
(
2002
).
35.
G.
Klein
,
Proc. R. Soc. London, Ser. A
211
,
431
(
1952
).
36.
See supplementary material at http://dx.doi.org/10.1063/1.3673791 for data tables and additional details left out in the main text.
37.
B.
Efron
and
R.
Tibshirani
,
An Introduction to the Bootstrap
(
Chapman and Hall
,
London
,
1993
).
38.
H. V.
Beijeren
,
K. W.
Kehr
, and
R.
Kutner
,
Phys. Rev. B
28
,
5711
(
1983
).
39.
40.
S. M.
Abel
,
Y. S.
Tse
, and
H. C.
Andersen
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
15142
(
2009
).
41.
This is analogous to the fact that in the DE theory for rotating rods, the explicit formula for Dr asserts that Dr is independent of Dr0 and D⊥0 for fixed D∥0. See Eq. (9).
42.
I.
Teraoka
and
R.
Hayakawa
,
J. Chem.
89
,
6989
(
1988
).

Supplementary Material

You do not currently have access to this content.