Irradiation of isolated water molecules by few-cycle pulses of intense infrared laser light can give rise to ultrafast rearrangement resulting in formation of the H2+ ion. Such unimolecular reactions occur on the potential energy surface of the H2O2+ dication that is accessed when peak laser intensities in the 1015 W cm−2 range and pulse durations as short as 9–10 fs are used; ion yields of ∼1.5% relative to the H2O+ ion are measured. We also study such reactions by means of time-dependent wavepacket dynamics on an ab initio potential energy surface of the dication and show that a proton, generated from O–H bond rupture, migrates towards the H-atom, and forms vibrationally excited H2+ in a well-defined spatial zone.

1.
K.
Yamanouchi
,
S. L.
Chin
,
P.
Agostini
, and
G.
Ferrante
,
Progress in Ultrafast Intense Laser Science
(
Springer
,
Berlin
,
2007
), Vol. 1–3.
2.
M.
Krishnamurthy
,
F. A.
Rajgara
, and
D.
Mathur
,
J. Chem. Phys.
121
,
9765
(
2004
).
3.
Y.
Furukawa
,
K.
Hosina
,
K.
Yamanouchi
, and
H.
Nakano
,
Chem. Phys. Lett.
414
,
117
(
2005
).
4.
T.
Okino
,
Y.
Furukawa
,
P.
Liu
,
T.
Ichikawa
,
R.
Itakura
,
K.
Hosina
,
K.
Yamanouchi
, and
H.
Nakano
,
Chem. Phys. Lett.
419
,
223
(
2006
).
5.
H.
Xu
,
T.
Okino
,
K.
Nakai
,
K.
Yamanouchi
,
S.
Roither
,
X.
Xie
,
D.
Kartashov
,
L.
Zhang
,
A.
Baltuska
, and
M.
Kitzler
,
Phys. Chem. Chem. Phys.
12
,
12939
(
2010
).
7.
P. M.
Kraus
,
M. C.
Schwarzer
,
N.
Schirmel
,
G.
Urbasch
,
G.
Frenking
, and
K.-M.
Weitzel
,
J. Chem. Phys.
134
,
114302
(
2011
).
8.
A.
Matsuda
,
M.
Fushitani
,
E. J.
Takahashi
, and
A.
Hishikawa
,
Phys. Chem. Chem. Phys.
13
,
8697
(
2011
).
9.
M.
Krishnamurthy
and
D.
Mathur
, in
Progress in Ultrafast Intense Laser Science III
, edited by
K.
Yamanouchi
,
S. L.
Chin
,
P.
Agostini
, and
G.
Ferrante
(
Springer
,
Berlin
,
2007
), Chap. 4, pp.
75
90
.
10.
11.
F. A.
Rajgara
,
D.
Mathur
,
A. K.
Dharmadhikari
, and
C. P.
Safvan
,
J. Chem. Phys.
130
,
231104
(
2009
).
12.
M.
Nisoli
,
S.
De Silvestri
, and
O.
Svelto
,
Appl. Phys. Lett.
68
,
2793
(
1996
).
14.
A. K.
Dharmadhikari
,
J. A.
Dharmadhikari
,
F. A.
Rajgara
, and
D.
Mathur
,
Opt. Express
16
,
7083
(
2008
).
15.
H.-J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
,
M.
Schütz
 et al, MOLPRO, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net.
16.
A.
Aguado
,
C.
Tablero
, and
M.
Panigua
,
Comput. Phys. Commun.
108
,
259
(
1988
).
17.
N.
Balakrishnan
and
N.
Sathymurthy
,
Comput. Phys. Commun.
63
,
209
(
1991
).
18.
N.
Balakrishnan
,
C.
Kalyanaraman
, and
N.
Sathyamurthy
,
Phys. Rep.
79
,
280
(
1997
).
19.
P. F.
Bernarth
,
Spectra of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
2005
).
20.
M. D.
Feit
,
J. A.
Fleck
 Jr.
, and
A.
Steiger
,
J. Comput. Phys.
47
,
412
(
1982
).
22.
J. C.
Light
,
I. P.
Hamilton
, and
J. V.
Lill
,
J. Chem. Phys.
82
,
1400
(
1985
).
24.
G. C.
Corey
and
D.
Lemoine
,
J. Chem. Phys.
97
,
4115
(
1992
).
25.
A. R.
Offer
and
G. G.
Balint-Kurti
,
J. Chem. Phys.
101
,
10416
(
1994
).
26.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes: The Art of Scientific Computing
(
Cambridge University Press
,
Cambridge
,
1986
), p.
125
.
27.
S.
Mahapatra
and
N.
Sathyamurty
,
J. Chem. Soc., Faraday Trans.
93
,
773
(
1997
).
You do not currently have access to this content.