Using isothermal-isobaric Monte Carlo simulations we investigate defect topologies due to a spherical colloidal particle immersed in a nematic liquid crystal. Defects arise because of the competition between the preferential orientation at the colloid's surface and the far-field director

$\widehat{\bm {n}}_{0}$
n̂0⁠. Considering a chemically homogeneous colloid as a special case we observe the well-known surface and saturn ring defect topologies for weak and strong perpendicular anchoring, respectively; for homogeneous, strong parallel anchoring we find a boojum defect topology that has been seen experimentally [see P. Poulin and D. A. Weitz, Phys. Rev. E57, 626 (1998)] but not in computer simulations. We also consider a heterogeneous, patchy colloid where the liquid-crystal molecules anchor either preferentially planar or perpendicular at the surface of the colloid. For a patchy colloid we observe a boojum ring defect topology in agreement with recent experimental studies [see M. Conradi, M. Ravnik, M. Bele, M. Zorko, S. Žumer, and I. Muševič, Soft Matter5, 3905 (2009)]. We also observe two other novel defect topologies that have not been reported thus far neither experimentally nor theoretically.

1.
H.
Stark
,
Phys. Rep.
351
,
387
(
2001
).
2.
S. H. L.
Klapp
,
S.
Grandner
,
Y.
Zeng
, and
R.
von Klitzing
,
Soft Matter
6
,
2330
(
2010
).
3.
U.
Ognysta
,
A.
Nych
,
V.
Nazarenko
,
M.
Škarabot
, and
I.
Muševič
,
Langmuir
25
,
12092
(
2009
).
4.
S.
Grandner
and
S. H. L.
Klapp
,
Europhys. Lett.
90
,
68004
(
2010
).
5.
J.
Joannopoulos
,
S.
Johnson
, and
J.
Winn
,
Photonic Crystals: Molding the Flow of Light
(
Princeton University Press
,
Princeton
,
2008
).
6.
E.
Yablonovitch
,
Phys. Rev. Lett.
58
,
2059
(
1987
).
7.
D.
Grier
,
MRS Bull.
23
,
21
(
1998
).
8.
H.
Qi
and
T.
Hegmann
,
J. Mater. Chem.
16
,
4197
(
2006
).
9.
P.
Poulin
,
H.
Stark
,
T. C.
Lubensky
, and
D. A.
Weitz
,
Science
275
,
1770
(
1997
).
10.
P.
Poulin
and
D. A.
Weitz
,
Phys. Rev. E
57
,
626
(
1998
).
11.
J.-C.
Loudet
,
P.
Barois
, and
P.
Poulin
,
Nature (London)
407
,
611
(
2000
).
12.
A. A.
Sonin
,
The Surface Physics of Liquid Crystals
(
Gordon and Breach
,
Amsterdam
,
1995
).
13.
A.
Figuerola
,
A.
Fiore
,
R. D.
Corato
,
A.
Falqui
,
C.
Giannini
,
E.
Micotti
,
A.
Lascialfari
,
M.
Corti
,
R.
Cingolani
,
T.
Pellegrino
,
P. D.
Cozzoli
, and
L.
Manna
,
J. Am. Chem. Soc.
130
,
1477
(
2008
).
14.
M.
Škarabot
,
M.
Ravnik
,
S.
Žumer
,
U.
Tkalec
,
I.
Poberaj
,
D.
Babič
,
N.
Osterman
, and
I.
Muševič
,
Phys. Rev. E
77
,
031705
(
2008
).
15.
O.
Mondain-Monval
,
J. C.
Dedieu
,
T.
Gulik-Krzywicki
, and
P.
Poulin
,
Eur. Phys. J. B
12
,
167
(
1999
).
16.
C.
Casagrande
and
M.
Veyssié
,
C. R. Acad. Sci. Paris, Ser. II
306
,
1423
(
1988
).
17.
A.
Walther
and
A. H. E.
Müller
,
Soft Matter
4
,
663
(
2008
).
18.
A.
Perro
,
S.
Reculusa
,
S.
Ravaine
,
E.
Bourgeat-Lami
, and
E.
Duguet
,
J. Mater. Chem.
15
,
3745
(
2012
).
19.
X. Y.
Ling
,
L. Y.
Phang
,
G.
Acikgoz
,
M. D.
Yilmaz
,
M. A.
Hempenius
,
G. J.
Vancso
, and
J.
Huskens
,
Angew. Chem.
121
,
7813
(
2009
).
20.
M.
Conradi
,
M.
Ravnik
,
M.
Bele
,
M.
Zorko
,
S.
Žumer
, and
I.
Muševič
,
Soft Matter
5
,
3905
(
2009
).
21.
M.
Conradi
,
M.
Zorko
, and
I.
Muševič
,
Opt. Express
18
,
500
(
2010
).
22.
S.
Hess
and
B.
Su
,
Z. Naturforsch.
54a
,
559
(
1999
).
23.
M.
Greschek
and
M.
Schoen
,
Phys. Rev. E
83
,
011704
(
2011
).
24.
M.
Greschek
and
M.
Schoen
,
J. Chem. Phys.
135
,
204702
(
2011
).
25.
H.
Steuer
,
S.
Hess
, and
M.
Schoen
,
Physica A
328
,
322
(
2003
).
26.
H.
Steuer
,
S.
Hess
, and
M.
Schoen
,
Phys. Rev. E
69
,
031708
(
2004
).
27.
M.
Greschek
,
M.
Melle
, and
M.
Schoen
,
Soft Matter
6
,
1898
(
2010
).
28.
M.
Greschek
and
M.
Schoen
,
Soft Matter
6
,
4931
(
2010
).
29.
D.
Andrienko
,
G.
Germano
, and
M. P.
Allen
,
Phys. Rev. E
63
,
041701
(
2001
).
30.
S.
Grollau
,
E. B.
Kim
,
O.
Guzmán
,
N. L.
Abbott
, and
J. J.
de Pablo
,
J. Chem. Phys.
119
,
2444
(
2003
).
31.
S.-H.
Hu
and
X.
Gao
,
J. Am. Chem. Soc.
132
,
7234
(
2010
).
32.
S.
Gangwal
,
A.
Pawar
,
I.
Kretzschmar
, and
O. D.
Velev
,
Soft Matter
6
,
1413
(
2010
).
33.
D. J.
Diestler
,
M.
Schoen
,
J. E.
Curry
, and
J. H.
Cushman
,
J. Chem. Phys.
100
,
9140
(
1994
).
34.
M.
Schoen
,
Physica A
270
,
353
(
1999
).
35.
M.
Schoen
and
S.
Klapp
,
Nanoconfined Fluids. Soft Matter Between Two and Three Dimensions
(
Wiley-VCH
,
New York
,
2007
).
36.
C. G.
Gray
and
K. E.
Gubbins
,
Theory of Molecular Fluids
, Vol.
1
(
Clarendon
,
Oxford
,
1984
).
37.
T.
Gruhn
and
M.
Schoen
,
J. Chem. Phys.
108
,
9124
(
1998
).
38.
I.
Pardowitz
and
S.
Hess
,
Physica A
100
,
540
(
1980
).
39.
R.
Eppenga
and
D.
Frenkel
,
Mol. Phys.
52
,
1303
(
1984
).
40.
W.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in FORTRAN
(
Cambridge University Press
,
Cambridge
,
1989
), Chap. 11.1.
41.
C.
Zannoni
,
The Physics of Liquid Crystals
(
Academic
,
London
,
1979
).
42.
H.
Weber
,
W.
Paul
, and
K.
Binder
,
Phys. Rev. E
59
,
2168
(
1999
).
43.
A.
Richter
and
T.
Gruhn
,
J. Chem. Phys.
125
,
064908
(
2006
).
44.
P. G.
de Gennes
and
J.
Prost
,
The Physics of Liquid Crystals
(
Oxford Science Publications
,
Oxford
,
1995
), Chap. 3.
45.
R. W.
Ruhwandl
and
E. M.
Terentjev
,
Phys. Rev. E
56
,
5561
(
1997
).
46.
T. C.
Lubensky
,
D.
Pettey
,
N.
Currier
, and
H.
Stark
,
Phys. Rev. E
57
,
610
(
1998
).
47.
H.
Stark
,
Eur. Phys. J. B
10
,
311
(
1999
).
48.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulations of Liquids
(
Clarendon
,
Oxford
,
1989
), Chap. 5.3.
49.
E. M.
Terentjev
,
Phys. Rev. E
51
,
1330
(
1995
).
50.
M. P.
Allen
,
M. A.
Warren
,
M. R.
Wilson
,
A.
Sauron
, and
W.
Smith
,
J. Chem. Phys.
105
,
2850
(
1996
).
51.
N. H.
Phuong
,
G.
Germano
, and
F.
Schmid
,
J. Chem. Phys
115
,
7227
(
2001
).
52.
H.
Schmidle
,
C. K.
Hall
,
O. D.
Velev
, and
S. H. L.
Klapp
,
Soft Matter
8
,
1521
(
2012
).
You do not currently have access to this content.