We report the measurement of a jet-cooled electronic spectrum of the silicon trimer. Si3 was produced in a pulsed discharge of silane in argon, and the excitation spectrum examined in the 18 000–20 800 cm−1 region. A combination of resonant two-color two-photon ionization (R2C2PI) time-of-flight mass spectroscopy, laser-induced fluorescence/dispersed fluorescence, and equation-of-motion coupled-cluster calculations have been used to establish that the observed spectrum is dominated by the

$1\sideset{^{3}}{_{1}^{\prime \prime }}{A}$
1A13 – 
$\tilde{a}$
ã
 
$\sideset{^{3}}{_{2}^{\prime }}{A}$
A23
transition of the D3h isomer. The spectrum has an origin transition at 18 600± 4 cm−1 and a short progression in the symmetric stretch with a frequency of ∼445 cm−1, in good agreement with a predicted vertical transition energy of 2.34 eV for excitation to the
$1\sideset{^{3}}{_{1}^{\prime \prime }}{A}$
1A13
state, which has a calculated symmetric stretching frequency of 480 cm−1. In addition, a ∼505 cm−1 ground state vibrational frequency determined from sequence bands and dispersed fluorescence is in agreement with an earlier zero-electron kinetic energy study of the lowest D3h state and with theory. A weaker, overlapping band system with a ∼360 cm−1 progression, observed in the same mass channel (m/z = 84) by R2C2PI but under different discharge conditions, is thought to be due to transitions from the (more complicated) singlet C2v ground state (1A1) state of Si3. Evidence of emission to this latter state in the triplet dispersed fluorescence spectra suggests extensive mixing in the excited triplet and singlet manifolds. Prospects for further spectroscopic characterization of the singlet system and direct measurement of the energy separation between the lowest singlet and triplet states are discussed.

1.
M. C.
McCarthy
,
C. A.
Gottlieb
, and
P.
Thaddeus
,
Mol. Phys.
101
,
697
(
2003
).
2.
M.
Grass
,
D.
Fischer
,
M.
Mathes
,
G.
Ganteför
, and
P.
Nielaba
,
Appl. Phys. Lett.
81
,
3810
(
2002
).
3.
J.
Cernicharo
,
C.
Kahane
,
J.
Gómez-González
, and
M.
Guélin
,
Astron. Astrophys.
167
,
L9
(
1986
).
4.
P. W.
Merrill
,
Publ. Astron. Soc. Pac.
46
,
175
(
1926
).
5.
R. F.
Sanford
,
Publ. Astron. Soc. Pac.
46
,
177
(
1926
).
6.
J. P.
Maier
,
N. M.
Lakin
,
G. A. H.
Walker
, and
D. A.
Bohlender
,
Astrophys. J.
553
,
267
(
2001
).
7.
I.
Vasiliev
,
S.
Öğüt
, and
J. R.
Chelikowsky
,
Phys. Rev. Lett.
78
,
4805
(
1997
).
8.
B. K.
Panda
,
S.
Mukherjee
, and
S. N.
Behera
,
Phys. Rev. B
63
,
045404
(
2001
).
9.
S.
Li
,
R. J. V.
Zee
,
J. W.
Weltner
, and
K.
Raghavachari
,
Chem. Phys. Lett.
243
,
275
(
1995
).
10.
C. S.
Xu
,
T. R.
Taylor
,
G. R.
Burton
, and
D. M.
Neumark
,
J. Chem. Phys.
108
,
1395
(
1998
).
11.
E. B.
Jochnowitz
and
J. P.
Maier
,
Annu. Rev. Phys. Chem.
59
,
519
(
2008
).
12.
K.
Raghavachari
and
V.
Logovinsky
,
Phys. Rev. Lett.
55
,
2853
(
1985
).
13.
K.
Raghavachari
,
J. Chem. Phys.
83
,
3520
(
1985
).
14.
R. S.
Grev
and
H. F.
Schaefer
 III
,
Chem. Phys. Lett.
119
,
111
(
1985
).
15.
C. M.
Rohlfing
and
K.
Raghavachari
,
J. Chem. Phys.
96
,
2114
(
1992
).
16.
J.
Fulara
,
P.
Freivogel
,
M.
Grutter
, and
J. P.
Maier
,
J. Chem. Phys.
100
,
18042
(
1996
).
17.
S.
Park
,
S.
Lee
, and
D.
Neuhauser
,
J. Phys. Chem. A
110
,
7173
(
2006
).
18.
M. C.
McCarthy
and
P.
Thaddeus
,
Phys. Rev. Lett.
90
,
213003
(
2003
).
19.
F. J.
Northrup
,
T. J.
Sears
, and
E. A.
Rohlfing
,
J. Mol. Spectrosc.
145
,
74
(
1991
).
20.
T. N.
Kitsopoulos
,
C. J.
Chick
,
A.
Weaver
, and
D. M.
Neumark
,
J. Chem. Phys.
93
,
6108
(
1990
).
21.
C. C.
Arnold
and
D. M.
Neumark
,
J. Chem. Phys.
100
,
1797
(
1994
).
22.
D. A.
Dixon
and
J. L.
Gole
,
Chem. Phys. Lett.
188
,
560
(
1992
).
23.
R.
Fournier
,
S. B.
Sinnott
, and
A. E.
DePristo
,
J. Chem. Phys.
97
,
4149
(
1992
).
24.
P.
Garcia-Fernandez
,
J. E.
Boggs
, and
J. F.
Stanton
,
J. Chem. Phys.
126
,
074305
(
2007
).
25.
J. F.
Stanton
,
J. Chem. Phys.
99
,
8840
(
1993
).
26.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
27.
D. L.
Kokkin
,
N. J.
Reilly
,
M. C.
McCarthy
, and
J. F.
Stanton
,
J. Mol. Spectrosc.
268
,
23
(
2011
).
28.
A. E.
Boguslavskiy
and
J. P.
Maier
,
Phys. Chem. Chem. Phys.
9
,
127
(
2007
).
29.
M. C.
McCarthy
,
W.
Chen
,
M. J.
Travers
, and
P.
Thaddeus
,
Astrophys. J., Suppl. Ser.
129
,
611
(
2000
).
30.
K.
Fuke
,
K.
Tsukanoto
,
F.
Misaizu
, and
M.
Sanekata
,
J. Chem. Phys.
99
,
7807
(
1993
).
31.
A. C.
Scheiner
,
G. E.
Scuseria
,
J. E.
Rice
,
T. J.
Lee
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
87
,
5361
(
1987
).
32.
K. A.
Peterson
and
J. T. H.
Dunning
,
J. Chem. Phys.
117
,
10548
(
2002
).
33.
J.
Gauss
and
J. F.
Stanton
,
Chem. Phys. Lett.
276
,
70
(
1997
).
34.
P. O.
Widmark
,
P. A.
Malmqvist
, and
B. O.
Roos
,
Theor. Chem. Acc.
77
,
291
(
1990
).
35.
CFOUR, a quantum chemical program package written by
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
,
P. G.
Szalay
with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
L.
Cheng
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
L. A.
Mück
,
D. P.
O'Neill
,
D. R.
Price
,
E.
Prochnow
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
. For the current version, see http://www.cfour.de.
36.
D. H.
Shi
,
J. F.
Sun
,
Z. L.
Zhu
, and
Y. F.
Liu
,
J. Quant. Spectrosc. Radiat. Transf.
112
,
2567
(
2011
).
37.
M.
Fukushima
,
S.
Mayama
, and
K.
Obi
,
J. Chem. Phys.
96
,
44
(
1992
).
38.
The strongest feature in Fig. 4 is the
$1_0^1$
101
$2_0^2$
202
band of the
$\tilde{A}$
Ã
 1B1 – 
$\tilde{X}$
X̃
 1A1 transition of SiH2, as reported by Ishikawa and Kajimoto.39 SiH2 has harmonic bending frequencies in its
$\tilde{X}$
X̃
 1A1and
$\tilde{A}$
Ã
 1B1 states of 1000 cm−1and 854 cm−1, respectively.37 Its
$1_0^1$
101
$2_1^3$
213
hot band thus occurs near 19040 cm−1, coincident with the Si3
$1_0^1$
101
band, and can emit to the blue of the laser in the DF spectrum. (Levels involving the bending mode of SiH2 also coincide with the Si312 level in this DF spectrum, so a Franck-Condon simulation of the Si3 DF intensities has little value.) Under slightly different expansion conditions, this hot band was extremely strong in survey LIF spectra. The observed Si3 fluorescence decay profile is characterized by a single exponential with a lifetime - about 1 μs - similar to that of SiH2, so fluorescence from the latter cannot be temporally gated out. While a definitive assignment of the particular lower state involved in the blue-shifted transition is not obvious, there are several transitions of SiH2 near 19 750 cm−1that could produce the appropriate blue-shift, within the monochromator resolution.39 Moreover, no transitions of Si3 were observed when the laser was scanned with the monochromator fixed over the blue-shifted feature, and no such feature appears at the same blue-shift in DF spectra from the Si3 origin and sequence bands. It thus seems unlikely that this blue-shifted feature comes from Si3; in particular, it is not associated with the triplet system studied here.
39.
H.
Ishikawa
and
O.
Kajimoto
,
J. Mol. Spectrosc.
160
,
1
(
1993
).
40.
N. J.
Reilly
,
T. W.
Schmidt
, and
S. H.
Kable
,
J. Phys. Chem. A
110
,
12355
(
2006
).
41.
N. J.
Reilly
,
D. L.
Kokkin
,
M.
Nakajima
,
K.
Nauta
,
S. H.
Kable
, and
T. W.
Schmidt
,
J. Am. Chem. Soc.
130
,
3137
(
2008
).
You do not currently have access to this content.