A highly accurate aniostropic intermolecular potential for diatomic hydrogen has been developed that is transferable for molecular modeling in heterogeneous systems. The potential surface is designed to be efficacious in modeling mixed sorbates in metal-organic materials that include sorption interactions with charged interfaces and open metal sites. The potential parameters are compatible for mixed simulations but still maintain high accuracy while deriving dispersion parameters from a proven polarizability model. The potential includes essential physical interactions including: short-range repulsions, dispersion, and permanent and induced electrostatics. Many-body polarization is introduced via a point-atomic polarizability model that is also extended to account for many-body van der Waals interactions in a consistent fashion. Permanent electrostatics are incorporated using point partial charges on atomic sites. However, contrary to expectation, the best potentials are obtained by permitting the charges to take on values that do not reproduce the first non-vanishing moment of the electrostatic potential surface, i.e., the quadrupole moment. Potential parameters are fit to match ab initio energies for a representative range of dimer geometries. The resulting potential is shown to be highly effective by comparing to electronic structure calculations for a thermal distribution of trimer geometries, and by reproducing experimental bulk pressure-density isotherms. The surface is shown to be superior to other similarly portable potential choices even in tests on homogeneous systems without strong polarizing fields. The present streamlined approach to developing such potentials allows for a simple adaptation to other molecules amenable to investigation by high-level electronic structure methods.

1.
P.
Diep
and
J. K.
Johnson
,
J. Chem. Phys.
112
,
4465
(
2000
).
2.
P.
Diep
and
J. K.
Johnson
,
J. Chem. Phys.
113
,
3480
(
2000
).
3.
K.
Patkowski
,
W.
Cencek
,
P.
Jankowski
,
K.
Szalewicz
,
J. B.
Mehl
,
G.
Garberoglio
, and
A. H.
Harvey
,
J. Chem. Phys.
129
,
094304
(
2008
).
4.
V.
Buch
,
J. Chem. Phys.
100
,
7610
(
1994
).
5.
J. L.
Belof
,
A. C.
Stern
, and
B.
Space
,
J. Chem. Theory Comput.
4
,
1332
(
2008
).
6.
J. L.
Belof
,
A. C.
Stern
, and
B.
Space
,
J. Phys. Chem. C
113
,
9316
(
2009
).
7.
J.
Belof
,
A.
Stern
,
M.
Eddaoudi
, and
B.
Space
,
J. Am. Chem. Soc.
129
,
15202
(
2007
).
8.
F.
Darkrim
and
D.
Levesque
,
J. Chem. Phys.
109
,
4981
(
1998
).
9.
K. A.
Forrest
,
T.
Pham
,
J. L.
Belof
,
A. C.
Stern
,
M. J.
Zaworotko
, and
B.
Space
, “
Simulation of the Mechanism of Gas Sorption in a Metal-Organic Framework with Open Metal Sites: Molecular Hydrogen in PCN-61
” (unpublished).
10.
M. J.
Renne
and
B. R. A.
Nijboer
,
Chem. Phys. Lett.
1
,
317
(
1967
)
11.
B.
Nijboer
and
M.
Renne
,
Chem. Phys. Lett.
2
,
35
(
1968
).
12.
Y. V.
Shtogun
and
L. M.
Woods
,
J. Phys. Chem. Lett.
1
,
1356
(
2010
).
13.
L.
Jensen
,
P.-O.
Åstrand
,
A.
Osted
,
J.
Kongsted
, and
K. V.
Mikkelsen
,
J. Chem. Phys.
116
,
4001
(
2002
).
14.
H.-Y.
Kim
,
J. O.
Sofo
,
D.
Velegol
,
M. W.
Cole
, and
A. A.
Lucas
,
J. Chem. Phys.
124
,
074504
(
2006
).
15.
L.
Jensen
,
P.-O.
Strand
,
K. O.
Sylvester-Hvid
, and
K. V.
Mikkelsen
,
J. Phys. Chem. A
104
,
1563
(
2000
).
16.
H.-Y.
Kim
,
J. O.
Sofo
,
D.
Velegol
,
M. W.
Cole
, and
A. A.
Lucas
,
Langmuir
23
,
1735
(
2007
).
17.
B. W.
Kwaadgras
,
M.
Verdult
,
M.
Dijkstra
, and
R.
van Roij
,
J. Chem. Phys.
135
,
134105
(
2011
).
18.
Note, Ref. 5 erroneously claims to reproduce both the gas phase quadrupole and polarizability tensor for hydrogen. However, the charges and polarizability parameters were inadvertently allowed to float in the fitting process leading to the published potential surface that is more accurate than is possible when reproducing the actual molecular data.
19.
E.
Lindholm
,
J.
Nickolls
,
S.
Oberman
, and
J.
Montrym
,
IEEE Micro
28
,
39
(
2008
).
20.
B.
Thole
,
Chem. Phys.
59
,
341
(
1981
).
21.
K. A.
Bode
and
J.
Applequist
,
J. Phys. Chem.
100
,
17820
(
1996
).
22.
G.
Steinebrunner
,
A. J.
Dyson
,
B.
Kirchner
, and
H.
Huber
,
J. Chem. Phys.
109
,
3153
(
1998
).
23.
S.
Bock
,
E.
Bich
, and
E.
Vogel
,
Chem. Phys.
257
,
147
(
2000
).
24.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C
, 2nd ed. (
Cambridge University Press
,
New York
,
1992
).
25.
A.
Hermann
,
R. P.
Krawczyk
,
M.
Lein
,
P.
Schwerdtfeger
,
I. P.
Hamilton
, and
J. J. P.
Stewart
,
Phys. Rev. A
76
,
013202
(
2007
).
26.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
27.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, et. al., MOLPRO, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net.
28.
MPMC is an in-house code developed by Jonathan Belof and maintained by Keith McLaughlin, Christian Cioce, and Brant Tudor. MPMC is released under GNU Public License and is available on Google Code http://code.google.com/p/mpmc.
29.
R. D.
Johnson
 III
, NIST Computational Chemistry Comparison and Benchmark Database: NIST Standard Reference Database Number 101 (Release 14 September
2006
).
30.
G.
Herzberg
,
Molecular Spectra and Molecular Structure
, 2nd ed. (
Krieger Publishing Co.
,
Malabar, FL
,
1989
), Vol.
1
, Appendix, p.
532
.
31.
J.
Thom
and
H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
32.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
33.
I. F.
Silvera
and
V. V.
Goldman
,
J. Chem. Phys.
69
,
4209
(
1978
).
34.
Annealing was preferred over least-squares due to the many-body nature of the potentials, the immense parameter space, and its ability to more easily locate global optima.
35.
Rather than using a polynomial to model the Pauli repulsion, one may instead opt for an exponential as seen in the Buckingham potential. In doing so, care must be taken to handle the net attraction of the potential at very short distances. The most straightforward solution involves imposing a minimum separation rmin during simulation and parameter relaxation; that is, automatically reject any Monte Carlo steps, which place two repulsive centers closer than rmin. During the parameter relaxation process, one would simply be substituting the energy threshold for a minimum separation, which may again lead to errant behavior at extremely high densities.
36.
C. R.
Cioce
,
G. D.
Quiel
,
K.
McLaughlin
,
J. L.
Belof
, and
B.
Space
, “
A sophisticated N2-N2 potential: Inclusion of polarization and coupled-dipole van der Waals forces
” (unpublished).
37.
C. R.
Cioce
,
B.
Tudor
,
K.
McLaughlin
,
J. L.
Belof
, and
B.
Space
, “
A transferable anisotropic potential for heterogeneous simulation of methane with many-body interactions
” (unpublished).
38.
A.
Mullen
,
J. L.
Belof
, and
B.
Space
, “
Developing a transferable anisotropic potential for CO2
” (unpublished).
39.
H.
Shaw
and
D.
Wones
,
Am. J. Sci.
262
,
918
(
1964
).
40.
L.
Zhou
and
Y.
Zhou
,
Int. J. Hydrogen Energy
26
,
597
(
2001
).
41.
NPT simulations were later performed on systems of 120 molecules, and were found to be in agreement.
42.
R.
Feynman
and
A.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
1965
).
43.
A.
Jones
, “
Quantum drude oscillators for accurate many-body intermolecular forces
,” Ph.D. dissertation (
University of Edinburgh
,
2010
).
44.
M. W. J.
Verdult
, “
A microscopic approach to van-der-Waals interactions between nanoclusters: The coupled dipole method
,” M.S. thesis,
Utrecht University
,
2010
.
45.
E.
Lemmon
,
M.
McLinden
, and
D.
Friend
, in
NIST Chemistry WebBook
, edited by
P.
Linstrom
, and
W.
Mallard
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2005
), Vol.
69
.
46.
B.
Younglove
,
J. Phys. Chem. Ref. Data
11
,
1
(
1982
).
You do not currently have access to this content.