The multiscale coarse-graining (MS-CG) method is a method for determining the effective potential energy function for a coarse-grained (CG) model of a molecular system using data obtained from molecular dynamics simulation of the corresponding atomically detailed model. The coarse-grained potential obtained using the MS-CG method is a variational approximation for the exact many-body potential of mean force for the coarse-grained sites. Here we propose a new numerical algorithm with noise suppression capabilities and enhanced numerical stability for the solution of the MS-CG variational problem. The new method, which is a variant of the elastic net method [Friedman et al., Ann. Appl. Stat.1, 302 (2007)] https://doi.org/10.1214/07-AOAS131, allows us to construct a large basis set, and for each value of a so-called “penalty parameter” the method automatically chooses a subset of the basis that is most important for representing the MS-CG potential. The size of the subset increases as the penalty parameter is decreased. The appropriate value to choose for the penalty parameter is the one that gives a basis set that is large enough to fit the data in the simulation data set without fitting the noise. This procedure provides regularization to mitigate potential numerical problems in the associated linear least squares calculation, and it provides a way to avoid fitting statistical error. We also develop new basis functions that are similar to multiresolution Haar functions and that have the differentiability properties that are appropriate for representing CG potentials. We demonstrate the feasibility of the combined use of the elastic net method and the multiresolution basis functions by performing a variational calculation of the CG potential for a relatively simple system. We develop a method to choose the appropriate value of the penalty parameter to give the optimal basis set. The combined effect of the new basis functions and the regularization provided by the elastic net method opens the possibility of using very large basis sets for complicated CG systems with many interaction potentials without encountering numerical problems in the variational calculation.

1.
M. P.
Allen
and
D. P.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford
,
1987
).
2.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic
,
2002
).
3.
S. O.
Nielsen
,
C. F.
Lopez
,
G.
Srinivas
, and
M. L.
Klein
,
J. Phys.: Condens. Matter
16
,
R481
(
2004
), and references therein.
4.
T.
Head-Gordon
and
S.
Brown
,
Curr. Opin. Struct. Biol.
13
,
160
(
2003
), and references therein.
5.
V.
Tozzini
,
Curr. Opin. Struct. Biol.
15
,
144
(
2005
), and references therein.
6.
I.
Bahar
and
A.
Rader
,
Curr. Opin. Struct. Biol.
15
,
586
(
2005
), and references therein.
7.
G. S.
Ayton
,
W. G.
Noid
, and
G. A.
Voth
,
Curr. Opin. Struct. Biol.
17
,
192
(
2007
).
8.
M.
Müller
,
K.
Katsov
, and
M.
Schick
,
Phys. Rep.
434
,
113
(
2006
), and references therein.
9.
J.
Baschnagel
,
K.
Binder
,
P.
Doruker
,
A. A.
Gusev
,
O.
Hahn
,
K.
Kremer
,
W. L.
Mattice
,
F.
Müller-Plathe
,
M.
Murat
, and
W.
Paul
 et al.,
Advances in Polymer Science
(
Springer-Verlag
,
Berlin, Heidelberg
,
2000
), Vol.
152
, p.
41
, and references therein.
10.
Coarse-Graining of Condensed Phase and Biomolecular Systems
, edited by
G. A.
Voth
(
CRC
,
2009
).
12.
N.
and
H.
Abe
,
Biopolymers
20
,
991
(
1981
).
13.
H.
Abe
and
N.
,
Biopolymers
20
,
1013
(
1981
).
14.
S.
Miyazawa
and
R. L.
Jernigan
,
Macromolecules
18
,
534
(
1985
).
15.
A. P.
Lyubartsev
and
A.
Laaksonen
,
Phys. Rev. E
52
,
3730
(
1995
).
16.
J. C.
Shelley
,
M. Y.
Shelley
,
R. C.
Reeder
,
S.
Bandyopadhyay
, and
M. L.
Klein
,
J. Phys. Chem. B
105
,
4464
(
2001
).
17.
S. J.
Marrink
,
A. H.
de Vries
, and
A. E.
Mark
,
J. Phys. Chem. B
108
,
750
(
2004
).
18.
A.
Liwo
,
S.
Oldziej
,
C.
Czaplewski
,
U.
Kozlowska
, and
H. A.
Scheraga
,
J. Phys. Chem. B
108
,
9421
(
2004
).
19.
A.
Liwo
,
C.
Czaplewski
,
J.
Pillardy
, and
H. A.
Scheraga
,
J. Chem. Phys.
115
,
2323
(
2001
).
20.
I. G.
Kevrekidis
,
C. W.
Gear
, and
G.
Hummer
,
AIChE J.
50
,
1346
(
2004
).
21.
N.-V.
Buchete
,
J. E.
Straub
, and
D.
Thirumalai
,
Protein Sci.
13
,
862
(
2004
).
22.
D.
Curco
,
R.
Nussinov
, and
C.
Aleman
,
J. Phys. Chem. B
111
,
14006
(
2007
).
23.
M.
Lu
and
J.
Ma
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
15358
(
2008
).
24.
M. A.
Jonikas
,
R. J.
Radmer
,
A.
Laederach
,
R.
Das
,
S.
Pearlman
,
D.
Herschlag
, and
R. B.
Altman
,
RNA
15
,
189
(
2009
).
25.
R. B.
Pandey
and
B. L.
Farmer
,
J. Chem. Phys.
130
,
044906
(
2009
).
26.
T.
Ha-Duong
,
N.
Basdevant
, and
D.
Borgis
,
Chem. Phys. Lett.
468
,
79
(
2009
).
27.
Z.
Zhang
and
W.
Wriggers
,
J. Phys. Chem. B
112
,
14026
(
2008
).
28.
A. Y.
Shih
,
A.
Arkhipov
,
P. L.
Freddolino
, and
K.
Schulten
,
J. Phys. Chem. B
110
,
3674
(
2006
).
29.
P. J.
Bond
,
J.
Holyoake
,
A.
Ivetac
,
S.
Khalid
, and
M. S.
Sansom
,
J. Struct. Biol.
157
,
593
(
2007
).
30.
D.
Reith
,
M.
Pütz
, and
F.
Müller-Plathe
,
J. Comput. Chem.
24
,
1624
(
2003
).
31.
L.
Monticelli
,
S. K.
Kandasamy
,
X.
Periole
,
R. G.
Larson
,
D. P.
Tieleman
, and
S.-J.
Marrink
,
J. Chem. Theory Comput.
4
,
819
(
2008
).
32.
K.
Moritsugu
and
J. C.
Smith
,
Biophys. J.
95
,
1639
(
2008
).
33.
C. F.
Abrams
,
L.
Delle Site
, and
K.
Kremer
,
Phys. Rev. E
67
,
021807
(
2003
).
34.
R. E.
Rudd
and
J. Q.
Broughton
,
Phys. Rev. B
58
,
R5893
(
1998
).
35.
R. L.C.
Akkermans
and
W. J.
Briels
,
J. Chem. Phys.
114
,
1020
(
2001
).
36.
H.
Fukunaga
,
J.
Takimoto
, and
M.
Doi
,
J. Chem. Phys.
116
,
8183
(
2002
).
37.
S. O.
Nielsen
,
C. F.
Lopez
,
G.
Srinivas
, and
M. L.
Klein
,
J. Chem. Phys.
119
,
7043
(
2003
).
38.
V.
Molinero
and
W. A.
Goddard
,
J. Phys. Chem. B
108
,
1414
(
2004
).
39.
G. S.
Ayton
,
H. L.
Tepper
,
D. T.
Mirijanian
, and
G. A.
Voth
,
J. Chem. Phys.
120
,
4074
(
2004
).
40.
S. D.
Chao
,
J. D.
Kress
, and
A.
Redondo
,
J. Chem. Phys.
122
,
234912
(
2005
).
41.
V.
Tozzini
and
J. A.
McCammon
,
Chem. Phys. Lett.
413
,
123
(
2005
).
42.
J.-W.
Chu
and
G. A.
Voth
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
13111
(
2005
).
43.
P. A.
Golubkov
and
P.
Ren
,
J. Chem. Phys.
125
,
064103
(
2006
).
44.
H.
Gohlke
and
M.
Thorpe
,
Biophys. J.
91
,
2115
(
2006
).
45.
D. A.
Kondrashov
,
Q.
Cui
, and
G. N.
Phillips
,
Biophys. J.
91
,
2760
(
2006
).
46.
L.-J.
Chen
,
H.-J.
Qian
,
Z.-Y.
Lu
,
Z.-S.
Li
, and
C.-C.
Sun
,
J. Phys. Chem. B
110
,
24093
(
2006
).
47.
S.
Izvekov
and
G. A.
Voth
,
J. Phys. Chem. B
109
,
2469
(
2005
).
48.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Phys.
123
,
134105
(
2005
).
49.
W. G.
Noid
,
J.-W.
Chu
,
G. S.
Ayton
,
V.
Krishna
,
S.
Izvekov
,
G. A.
Voth
,
A.
Das
, and
H. C.
Andersen
,
J. Chem. Phys.
128
,
244114
(
2008
).
50.
A.
Das
and
H. C.
Andersen
,
J. Chem. Phys.
132
,
164106
(
2010
).
51.
W. G.
Noid
,
P.
Liu
,
Y.
Wang
,
J.-W.
Chu
,
G. S.
Ayton
,
S.
Izvekov
,
H. C.
Andersen
, and
G. A.
Voth
,
J. Chem. Phys.
128
,
244115
(
2008
).
52.
A.
Das
and
H. C.
Andersen
,
J. Chem. Phys
131
,
034102
(
2009
).
53.
L.
Lu
and
G. A.
Voth
,
J. Phys. Chem. B
113
,
1501
(
2009
).
54.
L.
Lu
,
S.
Izvekov
,
A.
Das
,
H. C.
Andersen
, and
G. A.
Voth
,
J. Chem. Theory. Comput.
6
,
954
(
2010
).
55.
Y.
Wang
,
S.
Izvekov
,
T.
Yan
, and
G. A.
Voth
,
J. Phys. Chem. B
110
,
3564
(
2006
).
56.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Theory Comput.
2
,
637
(
2006
).
57.
J.
Zhou
,
I. F.
Thorpe
,
S.
Izvekov
, and
G. A.
Voth
,
Biophys. J.
92
,
4289
(
2007
).
58.
I. F.
Thorpe
,
J.
Zhou
, and
G. A.
Voth
,
J. Phys. Chem. B
112
,
13079
(
2008
).
59.
S.
Izvekov
,
A.
Violi
, and
G. A.
Voth
,
J. Phys. Chem. B
109
,
17019
(
2005
).
60.
Q.
Shi
,
S.
Izvekov
, and
G. A.
Voth
,
J. Phys. Chem. B
110
,
15045
(
2006
).
61.
V.
Krishna
,
W. G.
Noid
, and
G. A.
Voth
,
J. Chem. Phys
131
,
024103
(
2009
).
62.
J. W.
Mullinax
and
W. G.
Noid
,
J. Chem. Phys.
131
,
104110
(
2009
).
63.
H.
Zou
and
T.
Hastie
,
J. R. Stat. Soc. Ser. B (Stat. Methodol.)
67
,
301
(
2005
).
64.
J.
Friedman
,
T.
Hastie
,
H.
Höfling
, and
R.
Tibshirani
,
Ann. Appl. Stat.
1
,
302
(
2007
).
65.
L.
Larini
,
L.
Lu
, and
G. A.
Voth
,
J. Chem. Phys.
132
,
164107
(
2010
).
66.
A.
Das
and
H. C.
Andersen
,
J. Chem. Phys.
136
,
194114
(
2012
).
67.
We use the word “atomistic” to describe a simulation or a model in which all atoms are represented explicitly or in which H atoms have been incorporated into united atoms. Thus the “particles” or “atoms” in this context are actually atoms or combined atoms.
68.
This form of the normal equations is a special case of Eq. (18) of Ref. 51, with G in the latter corresponding to the B matrix here and b in the latter corresponding to A here. With B, A, and ϕ defined as they are, this equation is appropriate the case that each CG site is equivalent, there is at most one site on each molecule, there is a nonvariational part of the site-site interaction, and the site-site interaction is pairwise additive.
You do not currently have access to this content.