Calculations of sub-μhartree accuracy employing explicitly correlated Gaussian lobe functions produce comprehensive data on the energy E(ω), its components, and the one-electron properties of the two lowest-energy states of the three-electron harmonium atom. The energy computations at 19 values of the confinement strength ω ranging from 0.001 to 1000.0, used in conjunction with a recently proposed robust interpolation scheme, yield explicit approximants capable of estimating E(ω) and the potential energy of the harmonic confinement within a few tenths of μhartree for any ω ⩾ 0.001, the respective errors for the kinetic energy and the potential energy of the electron-electron repulsion not exceeding 2 μhartrees. Thanks to the correct ω → 0 asymptotics incorporated into the approximants, comparable accuracy is expected for values of ω smaller than 0.001. Occupation numbers of the dominant natural spinorbitals and two different measures of electron correlation are also computed.

3.
J.
Cioslowski
and
K.
Pernal
,
J. Chem. Phys.
113
,
8434
(
2000
) and the references cited therein.
4.
J.
Cioslowski
and
K.
Pernal
,
J. Chem. Phys.
125
,
064106
(
2006
).
5.
J.
Cioslowski
and
E.
Grzebielucha
,
Phys. Rev. A
77
,
032508
(
2008
).
6.
J.
Cioslowski
and
E.
Matito
,
J. Chem. Phys.
134
,
116101
(
2011
).
7.
R. J.
White
and
W.
Byers-Brown
,
J. Chem. Phys.
53
,
3869
(
1970
).
8.
J. M.
Benson
and
W.
Byers-Brown
,
J. Chem. Phys.
53
,
3880
(
1970
).
9.
C.
Yannouleas
and
U.
Landman
,
Rep. Prog. Phys.
70
,
2067
(
2007
).
10.
J.
Cioslowski
and
M.
Buchowiecki
,
J. Chem. Phys.
123
,
234102
(
2005
).
11.
P.
Ludwig
,
S.
Kosse
, and
M.
Bonitz
,
Phys. Rev. E
71
,
046403
(
2005
).
12.
P. M.
Laufer
and
J. B.
Krieger
,
Phys. Rev. A
33
,
1480
(
1986
).
13.
S.
Kais
,
D. R.
Hersbach
,
N. C.
Handy
,
C. W.
Murray
, and
G. J.
Laming
,
J. Chem. Phys.
99
,
417
(
1993
).
14.
Z.
Qian
and
V.
Sahni
,
Phys. Rev. A
57
,
2527
(
1998
).
15.
C.
Filippi
,
C. J.
Umrigar
, and
M.
Taut
,
J. Chem. Phys.
100
,
1290
(
1994
).
16.
M.
Taut
,
A.
Ernst
, and
H.
Eschrig
,
J. Phys. B
31
,
2689
(
1998
).
17.
C. J.
Huang
and
C. J.
Umrigar
,
Phys. Rev. A
56
,
290
(
1997
).
18.
P.
Hessler
,
J.
Park
, and
K.
Burke
,
Phys. Rev. Lett.
82
,
378
(
1999
).
19.
S.
Ivanov
,
K.
Burke
, and
M.
Levy
,
J. Chem. Phys.
110
,
10262
(
1999
).
20.
W. M.
Zhu
and
S. B.
Trickey
,
J. Chem. Phys.
125
,
094317
(
2006
).
21.
P. A.
Sundqvist
,
S. Y.
Volkov
,
Y. E.
Lozovik
, and
M.
Willander
,
Phys. Rev. B
66
,
075335
(
2002
).
22.
M.
Taut
,
K.
Pernal
,
J.
Cioslowski
, and
V.
Staemmler
,
J. Chem. Phys.
118
,
4818
(
2003
).
23.
K.
Varga
,
P.
Navratil
,
J.
Usukura
, and
Y.
Suzuki
,
Phys. Rev. B
63
,
205308
(
2001
).
24.
J.
Cioslowski
and
E.
Matito
,
J. Chem. Theory Comput.
7
,
915
(
2011
).
25.
S. F.
Boys
,
Proc. R. Soc. London Ser. A
258
,
402
(
1960
).
26.
K.
Singer
,
Proc. R. Soc. London Ser. A
258
,
412
(
1960
).
27.
J.
Rychlewski
and
J.
Komasa
,
Explicitly Correlated Wave Functions in Chemistry and Physics
(
Kluwer Academic
,
Dordrecht
,
2003
), pp.
91
147
.
28.
S.
Bubin
and
L.
Adamowicz
,
J. Chem. Phys.
121
,
6249
(
2004
).
29.
S.
Bubin
and
L.
Adamowicz
,
J. Chem. Phys.
126
,
214305
(
2007
).
30.
M.
Pavanello
and
L.
Adamowicz
,
J. Chem. Phys.
130
,
034104
(
2009
).
31.
W.-C.
Tung
,
M.
Pavanello
, and
L.
Adamowicz
,
J. Chem. Phys.
134
,
064117
(
2011
).
32.
33.
M.
Cafiero
and
L.
Adamowicz
,
Chem. Phys. Lett.
387
,
136
(
2004
) and the references cited therein.
34.
The extent of symmetry breaking by the computed wavefunctions is readily assessed with the expectation values of the
$\hat{L}^2$
L̂2
operator for the individual natural spinorbitals that are expected to approach L(L + 1), L = 0, 1, 2, … at the limit of ω → ∞. For example, one obtains the expectation values of 0.000006, 2.000000, and 2.000000 for the strongly occupied natural spinorbitals pertaining to the 4P+ state of the three-electron harmonium atom with ω = 1000.
35.
J.
Cioslowski
,
J. Chem. Phys.
136
,
044109
(
2012
).
36.
V. H.
Smith
 Jr
,
Theor. Chim. Acta.
7
,
245
(
1967
).
37.
P.
Ziesche
,
V. H.
Smith
 Jr.
,
M.
,
S.
Rudin
,
P.
Gersdorf
, and
M.
Taut
,
J. Chem. Phys.
110
,
6135
(
1999
).
38.
J. P.
Coe
,
A.
Sudbery
, and
I.
D’Amico
,
Phys. Rev. B
77
,
205122
(
2008
).
39.
The convergence of the computed energies is illustrated by the following examples: For the 2P state, one obtains E(10.0) = 61.13852568, 61.13852556, and 61.13852553, for M = 39, 69, and 152, respectively, which yields the extrapolated value of 61.13852552 based upon a [1/1] Padé approximant. Similarly, one obtains E(0.1) = 1.05944965, 1.05944933, and 1.05944923 (for M = 36, 71, and 166), and E(0.001) = 0.03484805, 0.03484604, and 0.03484583 (for M = 39, 100, and 225), which results in the respective extrapolated energies of 1.05944918 and 0.03484571. For the 4P+ state, the analogous data for E(0.001) read 0.03488111, 0.03487876, and 0.03487830 (for M = 225, 572, and 880), which corresponds to the extrapolated energy of 0.03487750.
You do not currently have access to this content.