A quantum approach and classical molecular dynamics simulations (CMDS) are proposed for the modeling of rotational relaxation and of the nonadiabatic alignment of gaseous linear molecules by a nonresonant laser field under dissipative conditions. They are applied to pure CO2 and compared by looking at state-to-state collisional rates and at the value of ⟨cos2[θz(t)]⟩ induced by a 100 fs laser pulse linearly polarized along |$\vec z$|z. The main results are: (i) When properly requantized, the classical model leads to very satisfactory predictions of the permanent and transient alignments under non-dissipative conditions. (ii) The CMDS calculations of collisional-broadening coefficients and rotational state-to-state rates are in very good agreement with those of a quantum model based on the energy corrected sudden (ECS) approximation. (iii) Both approaches show a strong propensity of collisions, while they change the rotational energy (i.e., J), to conserve the angular momentum orientation (i.e., M/J). (iv) Under dissipative conditions, CMDS and quantum-ECS calculations lead to very consistent decays with time of the “permanent” and transient components of the laser-induced alignment. This result, expected from (i) and (ii), is obtained only if a properly J- and M-dependent ECS model is used. Indeed, rotational state-to-state rates and the decay of the “permanent” alignment demonstrate, for pure CO2, the limits of a M-independent collisional model proposed previously. Furthermore, computations show that collisions induce a decay of the “permanent” alignment about twice slower than that of the transient revivals amplitudes, a direct consequence of (iii). (v) The analysis of the effects of reorienting and dephasing elastic collisions shows that the latter have a very small influence but that the former play a non-negligible role in the alignment dynamics. (vi) Rotation-translation collisionally induced transfers have also been studied, demonstrating that they only slightly change the alignment dissipation for the considered laser energy conditions.

1.
H.
Stepelfeldt
and
T.
Seideman
,
Rev. Mod. Phys.
75
,
543
(
2003
).
2.
T.
Seideman
and
E.
Hamilton
,
Adv. At. Mol. Opt. Phys.
52
,
289
(
2006
).
3.
M. S.
Molodenskiy
and
O. V.
Tikhonova
,
Laser Phys.
17
,
401
(
2007
).
4.
J.
Ohkubo
,
T.
Kato
,
H.
Kono
, and
Y.
Fujimura
,
J. Chem. Phys.
120
,
9123
(
2004
).
5.
E.
Gershnabel
and
I. Sh.
Averbukh
,
Phys. Rev. A
82
,
033401
(
2010
).
6.
Y.
Khodorkovsky
,
K.
Kitano
,
H.
Hasegawa
,
Y.
Ohshima
, and
I. Sh.
Averbukh
,
Phys. Rev. A
83
,
023423
(
2011
).
7.
S.
Ramakrishna
and
T.
Seideman
,
Phys. Rev. Lett.
95
,
113001
(
2005
).
8.
S.
Ramakrishna
and
T.
Seideman
,
J. Chem. Phys.
124
,
034101
(
2006
).
9.
A.
Pelzer
,
S.
Ramakrishna
, and
T.
Seideman
,
J. Chem. Phys.
126
,
034503
(
2007
).
10.
A.
Pelzer
,
S.
Ramakrishna
, and
T.
Seideman
,
J. Chem. Phys.
129
,
134301
(
2008
).
11.
W. K.
Liu
and
R. A.
Marcus
,
J. Chem. Phys.
63
,
272
(
1975
).
12.
V.
May
and
O.
Kuhn
.
Charge and Energy Transfer Dynamics in Molecular Systems
(
Wiley
,
Weinheim
,
2004
).
13.
D.
Sugny
,
C.
Kontz
, and
H. R.
Jauslin
,
Phys. Rev. A
74
,
053411
(
2006
).
14.
T.
Vieillard
,
F.
Chaussard
,
D.
Sugny
,
B.
Lavorel
, and
O.
Faucher
,
J. Raman Spectrosc.
39
,
694
(
2008
).
15.
D.
Zhdanov
and
H.
Rabitz
,
Phys. Rev. A
83
,
061402
R
(
2011
).
16.
J.-M.
Hartmann
,
C.
Boulet
, and
D.
Jacquemart
,
J. Chem. Phys.
134
,
094316
(
2011
).
17.
J.-M.
Hartmann
and
C.
Boulet
,
J. Chem. Phys.
134
,
184312
(
2011
).
18.
M. P.
Allen
and
D. J.
Tildesley
.
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1987
).
19.
A. P.
Kouzov
and
M.
Chrysos
,
Phys. Rev. A
89
,
042703
(
2009
).
20.
S.
Bock
,
E.
Bich
, and
E.
Vogel
,
Chem. Phys.
257
,
147
(
2000
).
21.
S.
Bock
,
E.
Bich
,
E.
Vogel
,
A. S.
Dickinson
, and
V.
Vesovic
,
J. Chem. Phys.
121
,
4117
(
2004
).
22.
R. G.
Gordon
,
J. Chem. Phys.
45
,
1649
(
1966
).
23.
M. L.
Strekalov
,
Chem. Phys. Lett.
332
,
525
(
2000
).
24.
P.
Bréchignac
,
A.
Picard-Bersellini
,
R.
Charneau
, and
J.-M.
Launay
,
Chem. Phys.
53
,
165
(
1980
).
25.
A. E.
DePristo
,
S. T.
Augustin
,
R.
Ramaswamy
, and
H.
Rabitz
,
J. Chem. Phys.
71
,
850
(
1979
).
26.
J.
Koubek
,
C.
Boulet
,
A.
Perrin
,
Š.
Urban
, and
J.-M.
Hartmann
,
J. Mol. Spectrosc.
266
,
12
(
2011
).
27.
J.-M.
Hartmann
,
C.
Boulet
, and
D.
Robert
.
Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications
(
Elsevier
,
Amsterdam
,
2008
).
28.
R.
Goldflam
,
D. J.
Kouri
, and
S.
Green
,
J. Chem. Phys.
67
,
5661
(
1977
).
29.
V.
Lemaire
,
L.
Dore
,
G.
Cazzoli
,
G.
Buffa
,
O.
Tarrini
,
E.
Baldanzi
, and
S.
Belli
,
J. Chem. Phys.
110
,
9418
(
1999
).
30.
A. E.
DePristo
,
J. Chem. Phys.
73
,
2145
(
1980
).
31.
A. E.
DePristo
and
H.
Rabitz
,
J. Chem. Phys.
72
,
4685
(
1980
).
32.
T. A.
Brunner
and
D.
Pritchard
, “
Fitting laws for rotationally inelastic collisions
,” in
Dynamics of the Excited State
, edited by
K. P.
Lawley
(
Wiley
,
New York
,
1982
), p.
589
.
33.
T.
Vieillard
, “
Dynamique induite par champ laser femtoseconde intense: Alignement moléculaire en milieux gazeux dense et effet Kerr
,” Ph.D. dissertation,
Université de Bourgogne
,
2011
.
34.
A.
Predoi-Cross
,
A. V.
Unni
,
W.
Liu
,
I.
Schofield
,
C.
Holladay
,
A. R. W.
McKellar
, and
D.
Hurtmans
,
J. Mol. Spectrosc.
245
,
34
(
2007
).
35.
L.
Bonamy
,
D.
Robert
,
J.
Boissoles
, and
C.
Boulet
,
J. Quant. Spectrosc. Radiat. Transf.
45
,
305
(
1991
).
36.
J.-M.
Hartmann
,
C.
Boulet
,
H.
Tran
, and
M. T.
Nguyen
,
J. Chem. Phys.
133
,
144313
(
2010
).
37.
L.
Gomez
,
S. V.
Ivanov
,
O. G.
Buzykin
, and
F.
Thibault
,
J. Quant. Spectrosc. Radiat. Transf.
112
,
1942
(
2011
).
38.
S.
Ivanov
. Poster P039 presented at 22nd HRMS, Dijon,
2011
.
39.
H.
Tran
,
J.-M.
Hartmann
,
F.
Chaussard
, and
M.
Gupta
,
J. Chem. Phys.
131
,
154303
(
2009
).
40.
A. D.
Rudert
,
J. B.
Halpern
,
J.
Martin
,
W. B.
Gao
, and
H.
Zacharias
,
J. Chem. Phys.
111
,
9549
(
2000
).
41.
A. D.
Rudert
,
J. B.
Halpern
,
J.
Martin
,
W. B.
Gao
, and
H.
Zacharias
,
J. Chem. Phys.
112
,
9749
(
2000
).
42.
G. O.
Sitz
and
R. L.
Farrow
,
J. Chem. Phys.
101
,
4682
(
1994
).
43.
M. H.
Alexander
and
S. L.
Davis
,
J. Chem. Phys.
78
,
6754
(
1983
).
44.
M. H.
Alexander
,
J. Chem. Phys.
67
,
2703
(
1977
).
45.
N.
Owschimikow
,
F.
Königsmann
,
J.
Maurer
,
P.
Giese
,
A.
Ott
,
B.
Schmidt
, and
N.
Schwentner
,
J. Chem. Phys.
133
,
044311
(
2010
).
46.
H.
Tran
,
B.
Lavorel
,
O.
Faucher
,
R.
Saint-Loup
, and
P.
Joubert
,
J. Raman Spectrosc.
34
,
994
(
2003
).
47.
M.
Morgen
,
W.
Price
,
L.
Hunziker
,
P.
Ludowise
,
M.
Blackwell
, and
Y.
Chen
,
Chem. Phys. Lett.
209
,
1
(
1993
).
48.
B.
Lavorel
,
O.
Faucher
,
M.
Morgen
, and
R.
Chaux
,
J. Raman Spectrosc.
31
,
77
(
2000
).
49.
A. S.
Dickinson
,
J. Chem. Phys.
125
,
064303
(
2006
).
50.
E. W.
Smith
,
M.
Giraud
, and
J.
Cooper
,
J. Chem. Phys.
65
,
1256
(
1976
).
51.
M. H.
Alexander
,
P. J.
Dagdigian
, and
A. E.
DePristo
,
J. Chem. Phys.
66
,
59
(
1977
).
52.
A.
Tramer
,
C.
Jungen
, and
F.
Lahmani
,
Energy Dissipation in Molecular Systems
(
Springer
,
Berlin
,
2005
).
53.
J.
Lambert
,
Vibrational and Rotational Relaxation in Gases
(
Clarendon
,
Oxford
,
1977
).
54.
F.
Cannemeijer
and
A. E.
De Vries
,
Physica
64
,
123
(
1973
).
55.
F.
Cannemeijer
and
A. E.
De Vries
,
Physica
70
,
135
(
1973
).
56.
V. V.
Nevdakh
,
L. N.
Orlov
, and
N. S.
Leshenyuk
,
J. Appl. Spectrosc.
70
,
276
(
2003
).
57.
V.
Vesovic
, private communication (
2011
), following Ref. 21.
58.
L.
Yuan
,
S. W.
Teitelbaum
,
A.
Robinson
, and
A. S.
Mullin
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
6872
(
2011
).
59.
T.
Vieillard
,
D.
Sugny
,
S.
Yvanov
,
J. M.
Hartmann
,
C.
Boulet
,
F.
Chaussard
,
O.
Faucher
, and
B.
Lavorel
, “
Field-free molecular alignment for probing collisional relaxation dynamics
” (unpublished).
60.
A. R.
Edmonds
,
Angular Momentum in Quantum Mechanics
, edited by
R.
Hofstader
(
Princeton University Press
,
Princeton
,
1974
).
You do not currently have access to this content.