We propose to apply expanded Wang-Landau simulations to study the adsorption of atomic and molecular fluids in porous materials. This approach relies on a uniform sampling of the number of atoms and molecules adsorbed. The method consists in determining a high-accuracy estimate of the grand-canonical partition function for the adsorbed fluids. Then, using the formalism of statistical mechanics, we calculate absolute and excess thermodynamic properties relevant to adsorption processes. In this paper, we examine the adsorption of argon and carbon dioxide in the isoreticular metal-organic framework (IRMOF-1). We assess the reliability of the method by showing that the predicted adsorption isotherms and isosteric heats are in excellent agreement with simulation results obtained from grand-canonical Monte Carlo simulations. We also show that the proposed method is very efficient since a single expanded Wang-Landau simulation run at a given temperature provides the whole adsorption isotherm. Moreover, this approach provides a direct access to a wide range of thermodynamic properties, such as, e.g., the excess Gibbs free energy and the excess entropy of adsorption.

1.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1987
).
2.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulations
(
Academic
,
2002
).
3.
S.
Keskin
,
J.
Liu
,
R. B.
Rankin
,
J. K.
Johnson
, and
D. S.
Sholl
,
Ind. Eng. Chem. Res.
48
,
2355
(
2009
).
4.
T.
Düren
,
Y.-S.
Bae
, and
R. Q.
Snurr
,
Chem. Soc. Rev.
38
,
1237
(
2009
).
5.
O. M.
Yaghi
,
M.
O'Keeffe
,
N. W.
Ockwig
,
H. K.
Chae
,
M.
Eddaoudi
, and
J.
Kim
,
Nature (London)
423
,
705
(
2003
).
6.
M.
Eddaoudi
,
J.
Kim
,
N.
Rosi
,
D.
Vodak
,
J.
Wachter
,
M.
O'Keeffe
, and
O. M.
Yaghi
,
Science
295
,
469
(
2002
).
7.
M. E.
Davis
,
Nature (London)
417
,
813
(
2002
).
8.
S. J.
James
,
Chem. Soc. Rev.
32
,
276
(
2003
).
9.
S.
Kitagawa
,
R.
Kitaura
, and
S.
Noro
,
Angew. Chem., Int. Ed.
43
,
2334
(
2004
).
10.
M. J.
Rosseinsky
,
Microporous Mesoporous Mater.
73
,
15
(
2004
).
11.
J. L. C.
Rowsell
and
O. M.
Yaghi
,
Microporous Mesoporous Mater.
73
,
3
(
2004
).
12.
U.
Mueller
,
M.
Schubert
,
F.
Teich
,
H.
Puetter
,
K.
Schierle-Arndt
, and
J.
Pastr
,
J. Mater. Chem.
16
,
626
(
2006
).
13.
H.
Frost
,
T.
Duren
, and
R. Q.
Snurr
,
J. Phys. Chem. B
110
,
9565
(
2006
).
14.
K. S.
Walton
,
A. R.
Millward
,
D.
Dubbeldam
,
H.
Frost
,
J. L.
Low
,
O. M.
Yaghi
, and
R. Q.
Snurr
,
J. Am. Chem. Soc.
130
,
406
(
2008
).
15.
J. A.
Greathouse
,
T. L.
Kinnibrugh
, and
M. D.
Allendorf
,
Ind. Eng. Chem. Res.
48
,
3425
(
2009
).
16.
D.
Dubbeldam
,
C. J.
Galvin
,
K. S.
Walton
,
D. E.
Ellis
, and
R. Q.
Snurr
,
J. Am. Chem. Soc.
130
,
10884
(
2008
).
17.
J. L. C.
Rowsell
and
O. M.
Yaghi
,
Angew. Chem., Int. Ed.
44
,
4670
(
2005
).
18.
T.
Duren
,
L.
Sarkisov
,
O. M.
Yaghi
, and
R. Q.
Snurr
,
Langmuir
20
,
2683
(
2004
).
19.
A. R.
Millward
and
O. M.
Yaghi
,
J. Am. Chem. Soc.
127
,
17998
(
2005
).
20.
M.
Eddaoudi
,
H.
Li
, and
O. M.
Yaghi
,
J. Am. Chem. Soc.
122
,
1391
(
2000
).
21.
A. G.
Wong-Foy
,
A. J.
Matzger
, and
O. M.
Yaghi
,
J. Am. Chem. Soc.
128
,
3494
(
2006
).
22.
J. L. C.
Rowsell
,
E. C.
Spencer
,
J.
Eckert
,
J. A. K.
Howard
, and
O. M.
Yaghi
,
Science
309
,
1350
(
2005
).
23.
R.
Babarao
,
Z.
Hu
,
J.
Jiang
,
S.
Chempath
, and
S. I.
Sandler
,
Langmuir
23
,
659
(
2007
).
24.
T.
Duren
and
R. Q.
Snurr
,
J. Phys. Chem. B
108
,
15703
(
2004
).
25.
R.
Xiong
,
D. J.
Keffer
,
M.
Fuentes-Cabrera
,
D. M.
Nicholson
,
A.
Michalkova
,
T.
Petrova
,
Leszczynski
,
K.
Odbadrakh
,
B. L.
Doss
, and
J. P.
Lewis
,
Langmuir
26
,
5942
(
2010
).
26.
S.
Paranthaman
,
F.-X.
Coudert
, and
H.
Fuchs
,
Phys. Chem. Chem. Phys.
12
,
8123
(
2010
).
27.
Q.
Yang
and
C.
Zhong
,
J. Phys. Chem. B
109
,
11862
(
2005
).
28.
Q.
Yang
,
C.
Zhong
, and
J.-F.
Chen
,
J. Phys. Chem. C
112
,
1562
(
2008
).
29.
J.-W.
Jiang
and
S.
Sandler
,
Langmuir
22
,
5702
(
2006
).
30.
L.
Sarkisov
,
T.
Duren
, and
R. Q.
Snurr
,
Mol. Phys.
102
,
211
(
2004
).
31.
G.
Garberoglio
,
A. I.
Skoulidas
, and
J. K.
Johnson
,
J. Phys. Chem. B
109
,
13094
(
2005
).
32.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
136
,
184107
(
2012
).
33.
A. P.
Lyubartsev
,
A. A.
Martsinovski
,
S. V.
Shevkunov
, and
P. N.
Vorontsov-Velyaminov
,
J. Chem. Phys.
96
,
1776
(
1992
).
34.
F.
Escobedo
and
J. J.
de Pablo
,
J. Chem. Phys.
105
,
4391
(
1996
).
35.
M.
Muller
and
W.
Paul
,
J. Chem. Phys.
100
,
719
(
1994
).
36.
F. A.
Escobedo
and
C. R. A.
Abreu
,
J. Chem. Phys.
124
,
104110
(
2006
).
37.
C. R. A.
Abreu
and
F. A.
Escobedo
,
J. Chem. Phys.
124
,
054116
(
2006
).
38.
J. K.
Singh
and
J. R.
Errington
,
J. Phys. Chem. B
110
,
1369
(
2006
).
39.
F. A.
Escobedo
and
F. J.
Martinez-Veracoechea
,
J. Chem. Phys.
127
,
174103
(
2007
).
40.
F. A.
Escobedo
,
J. Chem. Phys.
127
,
174104
(
2007
).
41.
F. A.
Escobedo
and
F. J.
Martinez-Veracoechea
,
J. Chem. Phys.
129
,
154107
(
2008
).
42.
W.
Shi
and
E. J.
Maginn
,
J. Comp. Chem.
29
,
2520
(
2008
).
43.
F. G.
Wang
and
D. P.
Landau
,
Phys. Rev. E
64
,
056101
(
2001
).
44.
S.
Wang
,
Q.
Yang
, and
C.
Zhong
,
Sep. Purif. Technol.
60
,
30
(
2008
).
45.
M. S.
Shell
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
Phys. Rev. E
66
,
056703
(
2002
).
46.
M. S.
Shell
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
J. Phys. Chem. B
108
,
19748
(
2004
).
47.
J. J.
de Pablo
,
Q.
Yan
, and
R.
Faller
,
J. Chem. Phys.
116
,
8649
(
2002
).
48.
M. S.
Shell
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
119
,
9406
(
2003
).
49.
J.
Luettmer-Strathmann
,
F.
Rampf
,
W.
Paul
, and
K.
Binder
,
J. Chem. Phys.
128
,
064903
(
2008
).
50.
G.
Gazenmüller
and
P. J.
Camp
,
J. Chem. Phys.
127
,
154504
(
2007
).
51.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
130
,
244109
(
2009
).
52.
T.
Aleksandrov
,
C.
Desgranges
, and
J.
Delhommelle
,
Fluid Phase Equilib.
287
,
79
(
2010
).
53.
C.
Desgranges
,
E. A.
Kastl
,
T.
Aleksandrov
, and
J.
Delhommelle
,
Mol. Simul.
36
,
544
(
2010
).
54.
C.
Desgranges
,
J. M.
Hicks
,
A.
Magness
, and
J.
Delhommelle
,
Mol. Phys.
108
,
151
(
2010
).
55.
A.
Malakis
,
A. N.
Berker
,
I. A.
Hijagapiou
,
N. G.
Fytas
, and
T.
Papakonstantinou
,
Phys. Rev. E
81
,
041113
(
2010
).
56.
G.
Gazenmüller
and
P. J.
Camp
,
Condens. Matter Phys.
14
,
33602
(
2011
).
57.
A. L.
Myers
and
P. A.
Monson
,
Langmuir
18
,
10261
(
2002
).
58.
S. L.
Mayo
,
B. D.
Olafson
, and
W. A.
Goddard
,
J. Phys. Chem.
94
,
8897
(
1990
).
59.
J. J.
Potoff
and
J. I.
Siepmann
,
AIChE J.
47
,
1676
(
2001
).
60.
C.
Zhou
and
R. N.
Bhatt
,
Phys. Rev. E
72
,
025701
(
2005
).
61.
A. I.
Skoulidas
and
D. S.
Sholl
,
J. Phys. Chem. B
109
,
15760
(
2005
).
62.
M.
DeToni
,
P.
Pullumbi
,
F.-X.
Coudert
, and
H.
Fuchs
,
J. Phys. Chem. C
114
,
21631
(
2010
).
63.
N. B.
Vargaftik
,
Y. K.
Vinoradov
, and
V. S.
Yargin
,
Handbook of Physical Properties of Liquids and Gases
(
Begell House
,
New York
,
1996
).
64.
D.
Farrusseng
,
C.
Daniel
,
C.
Gaudillere
,
U.
Ravon
,
Y.
Schuurman
,
C.
Mirodatos
,
D.
Dubbeldam
,
H.
Frost
, and
R. Q.
Snurr
,
Langmuir
25
,
7383
(
2009
).
You do not currently have access to this content.