An open question at the forefront of modern physical sciences is what role, if any, quantum effects may play in biological sensing and energy transport mechanisms. One area of such research concerns the possibility of coherent energy transport in photosynthetic systems. Spectroscopic evidence of long-lived quantum coherence in photosynthetic light-harvesting pigment protein complexes (PPCs), along with theoretical modeling of PPCs, has indicated that coherent energy transport might boost efficiency of energy transport in photosynthesis. Accurate assessment of coherence lifetimes is crucial for modeling the extent to which quantum effects participate in this energy transfer, because such quantum effects can only contribute to mechanisms proceeding on timescales over which the coherences persist. While spectroscopy is a useful way to measure coherence lifetimes, inhomogeneity in the transition energies across the measured ensemble may lead to underestimation of coherence lifetimes from spectroscopic experiments. Theoretical models of antenna complexes generally model a single system, and direct comparison of single system models to ensemble averaged experimental data may lead to systematic underestimation of coherence lifetimes, distorting much of the current discussion. In this study, we use simulations of the Fenna-Matthews-Olson complex to model single complexes as well as averaged ensembles to demonstrate and roughly quantify the effect of averaging over an inhomogeneous ensemble on measured coherence lifetimes. We choose to model the Fenna-Matthews-Olson complex because that system has been a focus for much of the recent discussion of quantum effects in biology, and use an early version of the well known environment-assisted quantum transport model to facilitate straightforward comparison between the current model and past work. Although ensemble inhomogeneity is known to lead to shorter lifetimes of observed oscillations (simply inhomogeneous spectral broadening in the time domain), this important fact has been left out of recent discussions of spectroscopic measurements of energy transport in photosynthesis. In general, these discussions have compared single-system theoretical models to whole-ensemble laboratory measurements without addressing the effect of inhomogeneous dephasing. Our work addresses this distinction between single system and ensemble averaged observations, and shows that the ensemble averaging inherent in many experiments leads to an underestimation of coherence lifetimes in individual systems.

1.
P.
Ball
,
Nature (London)
474
(
7351
),
272
(
2011
).
2.
M. I.
Franco
,
L.
Turin
,
A.
Mershin
, and
E. M. C.
Skoulakis
,
Proc. Natl. Acad. Sci. U.S.A.
108
(
9
),
3797
(
2011
).
3.
P. J.
Hore
,
Proc. Natl. Acad. Sci. U.S.A.
109
(
5
),
1357
(
2012
).
4.
G. S.
Schlau-Cohen
,
A.
Ishizaki
, and
G. R.
Fleming
,
Chem. Phys.
386
(
1–3
),
1
(
2011
).
5.
S. M.
Vlaming
,
R.
Augulis
,
M. C. A.
Stuart
,
J.
Knoester
, and
P. H. M. v.
Loosdrecht
,
J. Phys. Chem. B
113
(
8
),
2273
(
2009
).
6.
R. v.
Grondelle
and
V. I.
Novoderezhkin
,
Nature (London)
463
(
7281
),
614
(
2010
).
7.
G. D.
Scholes
,
G. R.
Fleming
,
A.
Olaya-Castro
, and
R.
van Grondelle
,
Nat. Chem.
3
(
10
),
763
(
2011
).
8.
A.
Ishizaki
,
T. R.
Calhoun
,
G. S.
Schlau-Cohen
, and
G. R.
Fleming
,
Phys. Chem. Chem. Phys.
12
(
27
),
7319
(
2010
).
9.
H.
Vasmel
,
R. J. V.
Dorssen
,
G. J.
Devos
, and
J.
Amesz
,
Photosynth. Res.
7
(
3
),
281
(
1986
).
10.
M.
Vos
,
A. M.
Nuijs
,
R. V.
Grondelle
,
R. J. V.
Dorssen
,
P. D.
Gerola
, and
J.
Amesz
,
Biochim. Biophys. Acta
891
(
3
),
275
(
1987
).
11.
M.
Mimuro
,
T.
Nowaza
,
N.
Tamai
,
K.
Shimada
,
I.
Yamazaki
,
S.
Lin
,
R. S.
Knox
,
B. P.
Wittmershaus
,
D. C.
Brune
, and
R. E.
Blankenship
,
J. Phys. Chem.
93
(
21
),
7503
(
1989
).
12.
13.
E.
Collini
,
C. Y.
Wong
,
K. E.
Wilk
,
P. M. G.
Curmi
,
P.
Brumer
, and
G. D.
Scholes
,
Nature (London)
463
(
7281
),
644
(
2010
).
14.
T. R.
Calhoun
,
N. S.
Ginsberg
,
G. S.
Schlau-Cohen
,
Y.-C.
Cheng
,
M.
Ballottari
,
R.
Bassi
, and
G. R.
Fleming
,
J. Phys. Chem. B
113
(
51
),
16291
(
2009
).
15.
H.
Lee
,
Y.-C.
Chent
, and
G. R.
Fleming
,
Science
316
(
5830
),
1462
(
2007
).
16.
I. P.
Mercer
,
Y. C.
El-Taha
,
N.
Kajumba
,
J. P.
Marangos
,
J. W. G.
Tisch
,
M.
Gabrielsen
,
R. J.
Cogdell
,
E.
Springate
, and
E.
Turcu
,
Phys. Rev. Lett.
102
(
5
),
057402
(
2009
).
17.
E.
Collini
and
G. D.
Scholes
,
Science
323
(
5912
),
369
(
2009
).
18.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T.-K.
Ahn
,
T.
Mančal
,
Y.-C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature (London)
446
,
782
(
2007
).
19.
G.
Panitchayangkoon
,
D.
Hayes
,
K. A.
Fransted
,
J. R.
Caram
,
E.
Harel
,
J.
Wen
,
R. E.
Blankenship
, and
G. S.
Engel
,
Proc. Natl. Acad. Sci. U.S.A.
107
(
29
),
12766
(
2010
).
20.
X.
Chen
and
R. J.
Silbey
,
J. Phys. Chem. B
115
(
18
),
5499
(
2011
).
21.
J.
Zhu
,
S.
Kais
,
P.
Rebentrost
, and
A.
Aspuru-Guzik
,
J. Phys. Chem. B
115
(
6
),
1531
(
2011
).
22.
X.-T.
Liang
,
Phys. Rev. E
82
(
5
),
051918
(
2010
).
23.
J.
Wu
,
F.
Liu
,
Y.
Shen
,
J.
Cao
, and
R. J.
Silbey
,
New J. Phys.
12
,
105012
(
2010
).
24.
E. N.
Zimanyi
and
R. J.
Silbey
,
J. Chem. Phys.
133
(
14
),
144107
(
2010
).
25.
A.
Ishizaki
and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U.S.A.
106
(
41
),
17255
(
2009
).
26.
P.
Rebentrost
,
M.
Mohseni
, and
A.
Aspuru-Guzik
,
J. Phys. Chem. B
113
(
29
),
9942
(
2009
).
27.
P.
Rebentrost
,
M.
Mohseni
,
I.
Kassal
,
S.
Lloyd
, and
A.
Aspuru-Guzik
,
New J. Phys.
11
,
033003
(
2009
).
28.
B.
Palmieri
,
D.
Abramavicius
, and
M.
Shaul
,
J. Chem. Phys.
130
(
20
),
204512
(
2009
).
29.
S. I. E.
Vulto
,
M. A. d.
Baat
,
S.
Neerken
,
F. R.
Nowak
,
H. v.
Amerongen
,
J.
Amesz
, and
T. J.
Aartsma
,
J. Phys. Chem. B
103
,
8153
(
1999
).
30.
A.
Ishizaki
and
G. R.
Fleming
,
J. Phys. Chem. B
115
(
19
),
6227
(
2011
).
31.
A.
Camara-Artigas
,
R. E.
Blankenship
, and
J. P.
Allen
,
Photosynth. Res.
75
(
1
),
49
(
2003
).
32.
Y. F.
Li
,
W. L.
Zhou
,
R. E.
Blankenship
, and
J. P.
Allen
,
J. Mol. Biol.
271
(
3
),
456
(
1997
).
33.
J.
Linnanto
,
A.
Freiberg
, and
J.
Korppi-Tommola
,
J. Phys. Chem. B
115
(
18
),
5536
(
2011
).
34.
C.
Olbrich
and
U.
Kleinekathoefer
,
J. Phys. Chem. B
114
(
38
),
12427
(
2010
).
35.
M. B.
Plenio
and
S. F.
Huelga
,
New J. Phys.
10
,
113019
(
2008
).
36.
D. E.
Tronrud
,
J.
Wen
,
L.
Gay
, and
R. E.
Blankenship
,
Photosynth. Res.
100
(
2
),
79
(
2009
).
37.
A.
Ishizaki
and
Y.
Tanimura
,
J. Phys. Soc. Jpn.
74
(
12
),
3131
(
2005
).
38.
L.
Chen
,
R.
Zheng
,
Y.
Jing
, and
Q.
Shi
,
J. Chem. Phys.
134
,
194508
(
2011
).
39.
J. Z.
Wen
,
H.
Zhang
,
M. L.
Gross
, and
R. E.
Blankenship
,
Proc. Natl. Acad. Sci. U.S.A.
106
(
15
),
6134
(
2009
).
40.
M. H.
Cho
,
H. M.
Vaswani
,
T.
Brixner
,
J.
Stenger
, and
G. R.
Fleming
,
J. Phys. Chem. B
109
(
21
),
10542
(
2005
).
41.
D.
Hayes
and
G. S.
Engel
,
Biophys. J.
100
(
8
),
2043
(
2011
).
42.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C: The Art of Scientific Computing
, 2nd ed. (
Cambridge University Press
,
Cambridge, UK
, 1992).
43.
See supplementary material at http://dx.doi.org/10.1063/1.4704591 for regression details.
44.
M. B.
Plenio
and
S. F.
Huelga
,
Procedia Chem.
3
,
248
(
2011
).
45.
J.
Wu
,
F.
Liu
,
J.
Ma
,
R. J.
Silbey
, and
J.
Cao
, “
Efficient energy transfer in light-harvesting systems, II: Quantum-classical comparison, flux network, and robustness analysis
,” e-print arXiv:1109.5769.
46.
S.
Lloyd
,
M.
Mohseni
,
A.
Shabani
, and
H.
Rabitz
, “
The quantum Goldilocks effect: on the convergence of timescales in quantum transport
,” paper delivered at the Royal Society Conference on Quantum Biology, June
2011
[
Phil. Trans. A
(to be published); e-print arXiv:1111.4982].
47.
A. F.
Fidler
,
E.
Harel
,
P. D.
Long
, and
G. S.
Engel
,
J. Phys. Chem. A
116
(
1
),
282
(
2012
).

Supplementary Material

You do not currently have access to this content.