The lowest-lying electronic singlet and triplet potential energy surfaces (PES) for the HNO–NOH system have been investigated employing high level ab initio quantum chemical methods. The reaction energies and barriers have been predicted for two isomerization and four dissociation reactions. Total energies are extrapolated to the complete basis set limit applying focal point analyses. Anharmonic zero-point vibrational energies, diagonal Born-Oppenheimer corrections, relativistic effects, and core correlation corrections are also taken into account. On the singlet PES, the 1HNO

$\longrightarrow$
1NOH endothermicity including all corrections is predicted to be 42.23 ± 0.2 kcal mol−1. For the barrierless decomposition of 1HNO to H + NO, the dissociation energy is estimated to be 47.48 ±  0.2 kcal mol−1. For 1NOH
$\longrightarrow$
H + NO, the reaction endothermicity and barrier are 5.25 ±  0.2 and 7.88 ± 0.2 kcal mol−1. On the triplet PES the reaction energy and barrier including all corrections are predicted to be 7.73 ±  0.2 and 39.31 ± 0.2 kcal mol−1 for the isomerization reaction 3HNO
$\longrightarrow$
3NOH. For the triplet dissociation reaction (to H + NO) the corresponding results are 29.03 ±  0.2 and 32.41 ± 0.2 kcal mol−1. Analogous results are 21.30 ± 0.2 and 33.67 ± 0.2 kcal mol−1 for the dissociation reaction of 3NOH (to H + NO). Unimolecular rate constants for the isomerization and dissociation reactions were obtained utilizing kinetic modeling methods. The tunneling and kinetic isotope effects are also investigated for these reactions. The adiabatic singlet–triplet energy splittings are predicted to be 18.45 ± 0.2 and 16.05 ± 0.2 kcal mol−1 for HNO and NOH, respectively. Kinetic analyses based on solution of simultaneous first-order ordinary-differential rate equations demonstrate that the singlet NOH molecule will be difficult to prepare at room temperature, while the triplet NOH molecule is viable with respect to isomerization and dissociation reactions up to 400 K. Hence, our theoretical findings clearly explain why 1NOH has not yet been observed experimentally.

1.
J. A.
Miller
and
C. T.
Bowman
,
Prog. Energy Combust. Sci.
15
,
287
(
1989
).
2.
K. M.
Miranda
,
Coord. Chem. Rev.
249
,
433
(
2005
).
3.
J. M.
Fukuto
,
A. S.
Dutton
, and
K. N.
Houk
,
ChemBioChem
6
,
612
(
2005
).
4.
J. M.
Fukuto
,
C. H.
Switzer
,
K. M.
Miranda
, and
D. A.
Wink
,
Annu. Rev. Pharmacol. Toxicol.
45
,
335
(
2005
).
5.
F. W.
Dalby
,
Can. J. Phys.
36
,
1336
(
1958
).
6.
H. W.
Brown
and
G. C.
Pimentel
,
J. Chem. Phys.
29
,
883
(
1958
).
7.
H. B.
Ellis
and
G. B.
Ellison
,
J. Chem. Phys.
78
,
6541
(
1983
).
8.
A. A.
Wu
,
S. D.
Peyerimhoff
, and
R. J.
Buenker
,
Chem. Phys. Lett.
35
,
316
(
1975
).
9.
S. P.
Walch
and
C. M.
Rohlfing
,
J. Chem. Phys.
91
,
2939
(
1989
).
10.
P. J.
Bruna
and
C. M.
Maria
,
Chem. Phys. Lett.
67
,
109
(
1979
).
11.
P. J.
Bruna
,
Chem. Phys.
49
,
39
(
1980
).
12.
A.
Heiberg
and
J.
Almlöf
,
Chem. Phys. Lett.
85
,
542
(
1982
).
13.
O.
Nomura
and
S.
Iwata
,
Chem. Phys. Lett.
66
,
523
(
1979
).
14.
K.
Saito
and
K.
Tagaki
,
J. Mol. Spectrosc.
47
,
99
(
1973
).
15.
J. L.
Bancroft
,
J. M.
Hollas
, and
D. A.
Ramsay
,
Can. J. Phys.
40
,
322
(
1962
).
16.
M. J. Y.
Clement
and
D. A.
Ramsay
,
Can. J. Phys.
39
,
205
(
1961
).
17.
J. K.
Cashion
and
J. C.
Polanyi
,
J. Chem. Phys.
30
,
317
(
1959
).
18.
A. W.
Salotto
and
L.
Burnelle
,
J. Chem. Phys.
52
,
2936
(
1970
).
19.
P. E. M.
Siegbahn
,
J.
Almlöf
,
A.
Heiberg
, and
B. O.
Roos
,
J. Chem. Phys.
74
,
2384
(
1981
).
20.
T. J.
Lee
,
J. Chem. Phys.
99
,
9783
(
1993
).
21.
T. J.
Lee
,
Chem. Phys. Lett.
223
,
431
(
1994
).
22.
C. E.
Dateo
,
T. J.
Lee
, and
D. W.
Schwenke
,
J. Chem. Phys.
101
,
5853
(
1994
).
23.
M. E.
Alikhani
,
C. E.
Dateo
, and
T. J.
Lee
,
J. Chem. Phys.
107
,
8208
(
1997
).
24.
A.
Luna
,
M.
Merchán
, and
B. O.
Roos
,
Chem. Phys.
196
,
437
(
1995
).
25.
J.
Ivanic
and
K.
Ruedenberg
,
Theor. Chem. Acc.
120
,
295
(
2008
).
26.
D. B.
Hartley
and
B. A.
Thrush
,
Proc. R. Soc. London, Ser. A
297
,
520
(
1967
).
27.
P. N.
Clough
,
B. A.
Thrush
,
D. A.
Ramsay
, and
J. G.
Stamper
,
Chem. Phys. Lett.
23
,
155
(
1973
).
28.
M.
Jacox
and
D.
Milligan
,
J. Mol. Spectrosc.
48
,
536
(
1973
).
29.
J. W. C.
Johns
and
A. R. W.
McKellar
,
J. Chem. Phys.
66
,
1217
(
1977
).
30.
J. W. C.
Johns
,
A. R. W.
McKellar
, and
E.
Weinberger
,
Can. J. Phys.
61
,
1106
(
1983
).
31.
J. C.
Petersen
and
M.
Vervloet
,
Chem. Phys. Lett.
141
,
499
(
1987
).
32.
A. W.
Salotto
and
L.
Burnelle
,
Chem. Phys. Lett.
3
,
80
(
1969
).
33.
P.
Botschwina
,
Mol. Phys.
32
,
729
(
1976
).
34.
P.
Botschwina
,
Chem. Phys.
40
,
33
(
1979
).
35.
O.
Nomura
,
Int. J. Quantum Chem.
18
,
143
(
1980
).
36.
R. N.
Dixon
,
K. B.
Jones
,
M.
Noble
, and
S.
Carter
,
Mol. Phys.
42
,
455
(
1981
).
37.
R.
Guadagnini
,
G.
Schatz
, and
S. P.
Walch
,
J. Chem. Phys.
102
,
774
(
1995
).
38.
D. H.
Mordaunt
,
H.
Flöthmann
,
M.
Stumpf
,
H. M.
Keller
,
C.
Beck
,
R.
Schinke
, and
K.
Yamashita
,
J. Chem. Phys.
107
,
6603
(
1997
).
39.
J.
Demaison
,
L.
Margulés
, and
J. E.
Boggs
,
Chem. Phys.
260
,
65
(
2000
).
40.
J.
Demaison
,
A. G.
Császár
, and
A.
Dehayem-Kamadjeu
,
J. Phys. Chem. A
110
,
13609
(
2006
).
41.
M.
Keçeli
,
T.
Shiozaki
,
K.
Yagi
, and
S.
Hirata
,
Mol. Phys.
107
,
1283
(
2009
).
42.
R.
Shepard
,
G. S.
Kedziora
,
H.
Lischka
,
I.
Shavitt
,
T.
Müller
,
P. G.
Szalay
,
M.
Kállay
, and
M.
Seth
,
Chem. Phys.
349
,
37
(
2008
).
43.
A.
Li
,
H.
Han
, and
D.
Xie
,
J. Chem. Phys.
135
,
104304
(
2011
).
44.
R.
Patrick
and
D. M.
Golden
,
J. Phys. Chem.
88
,
491
(
1984
).
45.
B. L.
Ulich
,
J. M.
Hollis
, and
L. E.
Synder
,
Astrophys. J.
217
,
L105
(
1977
).
46.
B. E.
Turner
,
Astrophys. J., Suppl. Ser.
76
,
617
(
1991
).
47.
K.
Andersson
,
P.-A.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
,
J. Phys. Chem.
94
,
5483
(
1990
).
48.
K.
Andersson
,
P.-A.
Malmqvist
, and
B. O.
Roos
,
J. Chem. Phys.
96
,
1218
(
1990
).
49.
K.
Andersson
and
B. O.
Roos
, in
Modern Electronic Structure Theory Part II
,
Advanced Series in Physical Chemistry
Vol.
2
, edited by
D. R.
Yarkony
(
World Scientific
,
London
,
1995
), pp.
55
109
.
50.
B. O.
Roos
, in
Theory and Applications of Computational Chemistry: The First Forty Years
, edited by
C.
Dykstra
(
Elsevier
,
New York
,
2005
), pp.
725
764
.
51.
G. E.
Scuseria
,
Chem. Phys. Lett.
176
,
27
(
1991
).
52.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
53.
G. E.
Scuseria
and
T. J.
Lee
,
J. Chem. Phys.
93
,
5851
(
1990
).
54.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
103
,
4572
(
1995
).
55.
X.
Zhang
,
A. T.
Maccarone
,
M. R.
Nimlos
,
S.
Kato
,
V. M.
Bierbaum
,
G. B.
Ellison
,
B.
Ruscic
,
A. C.
Simmonett
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
126
,
044312
(
2007
).
56.
K. L.
Bak
,
J.
Gauss
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
J. F.
Stanton
,
J. Chem. Phys.
114
,
6548
(
2001
).
57.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
132
,
064308
(
2010
).
58.
A. L. L.
East
and
W. D.
Allen
,
J. Chem. Phys.
99
,
4638
(
1993
).
59.
M. S.
Schuurman
,
S. R.
Muir
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
120
,
11586
(
2004
).
60.
J. M.
Gonzales
,
C.
Pak
,
R. S.
Cox
,
W. D.
Allen
,
H. F.
Schaefer
,
A. G.
Császár
, and
G.
Tarczay
,
Chem.-Eur. J.
9
,
2173
(
2003
).
61.
A. G.
Császár
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
108
,
9751
(
1998
).
62.
A. G.
Császár
,
G.
Tarczay
,
M. L.
Leininger
,
O. L.
Polyansky
,
J.
Tennyson
, and
W. D.
Allen
, in
Spectroscopy from Space
, edited by
J.
Demaison
and
K.
Sarka
(
Kluwer
,
Dordrecht
,
2007
), pp.
317
340
.
63.
J.
Bomble
,
J. F.
Stanton
,
M.
Kállay
, and
J.
Gauss
,
J. Chem. Phys.
123
,
054101
(
2005
).
64.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
123
,
214105
(
2005
).
65.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
66.
A. K.
Wilson
,
T.
van Mourik
, and
T. H.
Dunning
,
J. Mol. Struct.
388
,
339
(
1996
).
67.
D.
Feller
,
J. Chem. Phys.
98
,
7059
(
1993
).
68.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
69.
N. C.
Handy
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
84
,
4481
(
1986
).
70.
H.
Sellers
and
P.
Pulay
,
Chem. Phys. Lett.
103
,
463
(
1984
).
71.
S. A.
Perera
and
R. J.
Bartlett
,
Chem. Phys. Lett.
216
,
606
(
1993
).
72.
R. D.
Cowan
and
D. C.
Griffin
,
J. Opt. Soc. Am.
66
,
1010
(
1976
).
73.
CFOUR, a quantum chemical program package written by
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
,
P. G.
Szalay
with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
L.
Cheng
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
D. P.
O'Neill
,
D. R.
Price
,
E.
Prochnow
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
and the integral packages MOLECULE by
J.
Almlöf
and
P. R.
Taylor
, PROPS by
P. R.
Taylor
, ABACUS by
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
, and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
.
74.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
120
,
6841
(
2004
).
75.
M.
Kállay
,
P. G.
Szalay
, and
P. R.
Surjan
,
J. Chem. Phys.
117
,
980
(
2002
).
76.
M.
Kállay
,
J.
Gauss
, and
P. G.
Szalay
,
J. Chem. Phys.
119
,
2991
(
2003
).
77.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
121
,
9257
(
2004
).
78.
K.
Sarka
and
J.
Demaison
, in
Computational Molecular Spectroscopy
, edited by
P.
Jensen
and
P. R.
Bunker
(
Wiley
,
Chichester
,
2000
), pp.
255
304
.
79.
W. D.
Allen
and
A. G.
Császár
,
J. Chem. Phys.
98
,
2983
(
1993
).
80.
INTDER2005 is a general program written by W. D. Allen, which performs sundry vibrational analyses and higher order nonlinear transformations among force field representations.
81.
W. D.
Allen
,
A. G.
Császár
,
V.
Szalay
, and
I. M.
Mills
,
Mol. Phys.
89
,
1213
(
1996
).
82.
ANHARM is a fortran program written for VPT2 analysis by Y. Yamaguchi and H. F. Schaefer, Center for Computational Quantum Chemistry, University of Georgia, Athens, GA, USA,
2009
.
83.
W. H.
Miller
,
R.
Hernandez
,
N. C.
Handy
,
D.
Jayatilaka
, and
A.
Willetts
,
Chem. Phys. Lett.
172
,
62
(
1990
).
84.
K. A.
Holbrook
,
M. J.
Pilling
, and
S. H.
Robertson
,
Unimolecular Reactions
, 2nd ed. (
Wiley
,
New York
,
1996
), pp.
39
77
.
85.
J. I.
Steinfeld
,
J. S.
Francisco
, and
W. L.
Hase
,
Chemical Kinetics and Dynamics
, 2nd ed. (
Prentice-Hall
,
New Jersey
,
1999
), pp.
287
382
.
86.
MULTIWELL-2009.3 software, 2009, designed and maintained by John R. Barker with contributors N. F. Ortiz, J. M. Preses, L. L. Lohr, A. Maranzana, P. J. Stimac, and L. T. Nguyen, University of Michigan, Ann Arbor, MI, see http://aoss.engin.umich.edu/multiwell/.
87.
J. R.
Barker
,
Int. J. Chem. Kinet.
33
,
232
(
2001
).
88.
J. R.
Barker
,
L. M.
Yoder
, and
K. D.
King
,
J. Phys. Chem A
105
,
796
(
2001
).
89.
W. H.
Miller
,
J. Am. Chem. Soc.
101
,
6810
(
1979
).
90.
MATLAB 7.0.4, The Language of Technical Computing, The MathWorks Inc., Natick, MA,
2005
.
91.
T. J.
Lee
,
J. E.
Rice
,
G. E.
Scuseria
, and
H. F.
Schaefer
,
Theor. Chem. Acc.
75
,
81
(
1989
).
92.
T. J.
Lee
and
P. R.
Taylor
,
Int. J. Quantum Chem., Symp.
23
,
199
(
1989
).
93.
D.
Jayatilaka
and
T. J.
Lee
,
J. Chem. Phys.
98
,
9734
(
1993
).
94.
K. P.
Huber
and
G.
Herzberg
,
Molecular Spectra and Molecular Structure
,
Constants of Diatomic Molecules
, Vol.
4
(
Van Nostrand
,
Princeton
,
1979
).
95.
J. F.
Ogilvie
,
J. Mol. Struct.
31
,
407
(
1976
).
96.
See supplementary material at http://dx.doi.org/10.1063/1.4704895 for geometries, harmonic, and anhormonic frequencies, and rate constants for isotopic species.

Supplementary Material

You do not currently have access to this content.