The structures of bismuth cluster cations in the range between 4 and 14 atoms have been assigned by a combination of gas phase ion mobility and trapped ion electron diffraction measurements together with density functional theory calculations. We find that above 8 atoms the clusters adopt prolate structures with coordination numbers between 3 and 4 and highly directional bonds. These open structures are more like those seen for clusters of semiconducting-in-bulk elements (such as silicon) rather than resembling the compact structures typical for clusters of metallic-in-bulk elements. An accurate description of bismuth clusters at the level of density functional theory, in particular of fragmentation pathways and dissociation energetics, requires taking spin-orbit coupling into account. For n = 11 we infer that low energy isomers can have fragmentation thresholds comparable to their structural interconversion barriers. This gives rise to experimental isomer distributions which are dependent on formation and annealing histories.

1.
N. N.
Greenwood
and
A.
Earnshaw
,
Chemistry of the Elements
, 2nd Ed. (
Elsevier
,
1997
).
2.
G.
Day
,
R.
Glaser
,
N.
Shimomura
,
A.
Takamuku
, and
K.
Ichikawa
,
Chem. Eur. J.
6
,
1078
(
2000
).
3.
A. N.
Kuznetsov
,
L.
Kloo
,
M.
Lindsjö
,
J.
Rosdahl
, and
H.
Stoll
,
Chem. Eur. J.
7
,
2821
(
2001
).
4.
R. G.
Wheeler
,
K.
Laihing
,
W. L.
Wilson
, and
M. A.
Duncan
,
Chem. Phys. Lett.
131
,
1
(
1986
).
5.
M. E.
Geusic
,
R. R.
Freeman
, and
M. A.
Duncan
,
J. Chem. Phys.
89
,
223
(
1988
).
6.
M. E.
Geusic
,
R. R.
Freeman
, and
M. A.
Duncan
,
J. Chem. Phys.
88
,
163
(
1988
).
7.
M. M.
Ross
and
S. W.
McElvany
,
J. Chem. Phys.
89
,
4821
(
1988
).
8.
T. M.
Bernhardt
,
B.
Kaiser
, and
K.
Rademann
,
Z. Phys. D: At., Mol. Clusters
40
,
327
(
1997
).
9.
S.
Yin
,
X.
Xu
,
R.
Moro
, and
W. A.
de Heer
,
Phys. Rev. B
72
,
174410
(
2005
).
10.
M. L.
Polak
,
J.
Ho
,
G.
Gerber
, and
W. C.
Lineberger
,
J. Chem. Phys.
95
,
3053
(
1991
).
11.
M.
Gausa
,
R.
Kaschner
,
H. O.
Lutz
,
G.
Seifert
, and
K.-H.
Meiwes-Broer
,
Chem. Phys. Lett.
230
,
99
(
1994
).
12.
M.
Gausa
,
R.
Kaschner
,
G.
Seifert
,
J. H.
Faehrmann
,
H. O.
Lutz
, and
K.-H.
Meiwes-Broer
,
J. Chem. Phys.
104
,
9719
(
1996
).
13.
H. J.
Zhai
,
L. S.
Wang
,
A. E.
Kuznetsov
, and
A. I.
Boldyrev
,
J. Phys. Chem. A
106
,
5600
(
2002
).
14.
Z.
Li
,
C.
Zhao
, and
L.
Chen
,
Theochem
854
,
46
(
2008
).
15.
L.
Gao
,
P.
Li
,
H.
Lu
,
S. F.
Li
, and
Z. X.
Guo
,
J. Chem. Phys.
128
,
194304
(
2008
).
16.
J. M.
Jia
,
G. B.
Chen
,
D. N.
Shi
, and
B. L.
Wang
,
Eur. Phys. J. D
47
,
359
(
2008
).
17.
H. K.
Yuan
,
H.
Chen
,
A. L.
Kuang
,
Y.
Miao
, and
Z. H.
Xiong
,
J. Chem. Phys.
128
,
094305
(
2008
).
18.
P.
Weis
,
S.
Gilb
,
P.
Gerhardt
, and
M. M.
Kappes
,
Int. J. Mass Spectrom.
216
,
59
(
2002
).
19.
T. G.
Dietz
,
M. A.
Duncan
,
D. E.
Powers
, and
R. E.
Smalley
,
J. Chem. Phys.
74
,
6511
(
1981
).
20.
P.
Milani
and
W. A.
deHeer
,
Rev. Sci. Instrum.
61
,
1835
(
1990
).
21.
U.
Heiz
,
F.
Vanolli
,
L.
Trento
, and
W.-D.
Schneider
,
Rev. Sci. Instrum.
68
,
1986
(
1997
).
22.
P.
Weis
,
T.
Bierweiler
,
E.
Vollmer
, and
M. M.
Kappes
,
J. Chem. Phys.
117
,
9293
(
2002
).
23.
See supplementary material at http://dx.doi.org/10.1063/1.3703014 for cartesian coordinates of all structures investigated as well as experimental and calculated molecular scattering functions for Bi11+-Bi14+ and arrival time distributions for Bi9+.
24.
A. A.
Shvartsburg
,
B.
Liu
,
M. F.
Jarrold
, and
K.-M.
Ho
,
J. Chem. Phys.
112
,
4517
(
2000
).
25.
D.
Schooss
,
M. N.
Blom
,
J. H.
Parks
,
B.
von Issendorff
,
H.
Haberland
, and
M. M.
Kappes
,
Nano Lett.
5
,
1972
(
2005
);
[PubMed]
M. N.
Blom
,
D.
Schooss
,
J.
Stairs
, and
M. M.
Kappes
,
J. Chem. Phys.
124
,
244308
(
2006
).
[PubMed]
26.
H.
Haberland
,
M.
Mall
,
M.
Moseler
,
Y.
Qian
,
T.
Reiners
, and
Y.
Thurner
,
J. Vac. Sci. Technol. A
12
,
2925
(
1994
).
27.
Locally modified version of turbomole Version 6.3, (c) TURBOMOLE GmbH 2011. TURBOMOLE is a development of University of Karlsruhe and Forschungszentrum Karlsruhe 1989-2007, TURBOMOLE GmbH since 2007.
28.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
29.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
240
,
283
(
1995
);
F.
Weigend
,
Phys. Chem. Chem. Phys.
8
,
1057
(
2006
).
[PubMed]
30.
B.
Metz
,
H.
Stoll
, and
M.
Dolg
,
J. Chem. Phys.
113
,
2563
(
2000
).
31.
M. K.
Armbruster
,
F.
Weigend
,
C.
van Wüllen
, and
W.
Klopper
,
Phys. Chem. Chem. Phys.
10
,
1748
1756
(
2008
).
32.
D. M.
Deaven
and
K. M.
Ho
,
Phys. Rev. Lett.
75
,
288
(
1995
);
[PubMed]
M.
Sierka
,
J.
Döbler
,
J.
Sauer
,
G.
Santambrogio
,
M.
Brümmer
,
L.
Wöste
,
E.
Janssens
,
G.
Meijer
, and
K. R.
Asmis
,
Angew. Chem., Int. Ed.
46
,
3372
(
2007
);
33.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
34.
F.
Weigend
and
A.
Baldes
,
J. Chem. Phys.
133
,
174102
(
2010
).
35.
R.
Kelting
,
R.
Otterstätter
,
P.
Weis
,
N.
Drebov
,
R.
Ahlrichs
, and
M. M.
Kappes
J. Chem. Phys.
134
,
024311
(
2011
).
36.
N.
Drebov
,
E.
Oger
,
T.
Rapps
,
R.
Kelting
,
D.
Schooss
,
P.
Weis
,
M. M.
Kappes
, and
R.
Ahlrichs
,
J. Chem. Phys.
133
,
224302
(
2010
).
37.
E.
Oger
,
R.
Kelting
,
P.
Weis
,
A.
Lechtken
,
D.
Schooss
,
N. R. M.
Crawford
,
R.
Ahlrichs
, and
M. M.
Kappes
,
J. Chem. Phys.
130
,
124305
(
2009
).
38.
D.
Schooss
,
P.
Weis
,
O.
Hampe
, and
M. M.
Kappes
,
Philos. Trans. R. Soc. London, Ser. A
368
,
1211
(
2010
).
39.
N.
Wiberg
,
E.
Wiberg
, and
A. F.
Holleman
,
Lehrbuch der Anorganischen Chemie
, 102th ed. (
de Gruyter
,
Berlin
,
2007
).
40.
D. D.
Wagman
,
W.
Evans
,
V. B.
Parker
,
R. H.
Schumm
,
I.
Halow
,
S. M.
Bailey
,
K. L.
Churney
, and
R. L.
Nuttall
,
J. Phys. Chem. Ref. Data
11
(
2
),
2
(
1982
).
41.
A.
Baldes
,
R.
Gulde
, and
F.
Weigend
,
J. Cluster Sci.
22
,
355
(
2011
).

Supplementary Material

You do not currently have access to this content.