A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%–30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model chemistry yields MAD=0.68 kcal/mol, which represents a huge improvement over plain B3LYP/6-31G* (MAD=2.3 kcal/mol). Application of gCP-corrected B97-D3 and HF-D3 on a set of large protein-ligand complexes prove the robustness of the method. Analytical gCP gradients make optimizations of large systems feasible with small basis sets, as demonstrated for the inter-ring distances of 9-helicene and most of the complexes in Hobza's S22 test set. The method is implemented in a freely available FORTRAN program obtainable from the author's website.

1.
F. B.
van Duijneveldt
,
J. G. C. M.
van Duijneveldt-van de Rijdt
, and
J. H.
van Lenthe
,
Chem. Rev.
94
,
1873
(
1994
).
2.
B.
Liu
and
A. D.
McLean
,
J. Chem. Phys.
59
,
4557
(
1973
).
3.
N. R.
Kestner
,
J. Chem. Phys.
48
,
252
(
1968
).
4.
H. B.
Jansen
and
P.
Ros
,
Chem. Phys. Lett.
3
,
140
(
1969
).
5.
S.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
6.
I. S.
Ufimtsev
and
T. J.
Martinez
,
J. Chem. Theory Comput.
5
,
1004
(
2009
).
7.
K. A.
Wilkinson
,
P.
Sherwood
,
M. F.
Guest
, and
K. J.
Naidoo
,
J. Comput. Chem.
32
,
2313
(
2011
).
8.
C.
Ochsenfeld
,
J.
Kussmann
, and
D. S.
Lambrecht
, in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
T. R.
Cundari
(
Wiley
,
Hoboken, NJ, USA
,
2007
), Vol.
23
, pp.
1
82
.
9.
C.
Ochsenfeld
,
C. A.
White
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
1663
(
1998
).
10.
G. D.
Fletcher
,
D. G.
Fedorov
,
S. R.
Pruitt
,
T. L.
Windus
, and
M. S.
Gordon
,
J. Chem. Theory Comput.
8
,
75
(
2012
).
11.
N. J.
Mayhall
and
K.
Raghavachari
,
J. Chem. Theory Comput.
7
,
1336
(
2011
).
12.
R.
Alizadegan
,
K. J.
Hsia
, and
T. J.
Martinez
,
J. Chem. Phys.
132
,
034101
(
2010
).
13.
H. M.
Senn
and
W.
Thiel
,
Angew. Chem., Int. Ed.
48
,
1198
(
2009
).
14.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
15.
W.
Koch
and
M. C.
Holthausen
,
A Chemist's Guide to Density Functional Theory
(
Wiley VCH
,
New York
,
2001
).
16.
S.
Grimme
,
J.
Antony
,
T.
Schwabe
, and
C.
Mück-Lichtenfeld
,
Org. Biomol. Chem.
5
,
741
(
2007
).
17.
J.
Šponer
and
P.
Hobza
, in
Encyclopedia of Computational Chemistry
, edited by
P.
von Rague Schleyer
(
Wiley
,
New York
,
2001
).
18.
H.
Kruse
and
S.
Grimme
,
J. Phys. Chem. C
113
,
17006
(
2009
).
19.
N.
Hansen
,
T.
Kerber
,
J.
Sauer
,
A. T.
Bell
, and
F. J.
Keil
,
J. Am. Chem. Soc.
132
,
11525
(
2010
).
20.
J.-M.
Lehn
,
Supramolecular Chemistry. Concepts and Perspectives
(
VCH
,
Weinheim
,
1995
).
21.
N.
Kannan
and
S.
Vishveshwara
,
Protein Eng.
13
,
753
(
2000
).
22.
M. P.
Waller
,
H.
Kruse
,
C.
Mück-Lichtenfeld
, and
S.
Grimme
,
Chem. Soc. Rev.
41
,
3119
(
2012
).
23.
K.
Müller-Dethlefs
and
P.
Hobza
,
Chem. Rev.
100
,
143
(
2000
).
24.
A. J.
Stone
,
The Theory of Intermolecular Forces
(
Oxford University Press
,
Oxford
,
1997
).
25.
I. G.
Kaplan
,
Intermolecular Interactions
(
Wiley
,
Chichester
,
2006
).
26.
S.
Grimme
,
WIREs Comput. Mol. Sci.
1
,
211
(
2011
).
27.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
28.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
29.
W.
Hujo
and
S.
Grimme
,
J. Chem. Theory Comput.
7
,
3866
(
2011
).
30.
O. A.
Vydrov
and
T.
Van Voorhis
,
J. Chem. Phys.
133
,
244103
(
2010
).
31.
P.
Canfield
,
M. G.
Dahlbom
,
N. S.
Hush
, and
J. R.
Reimers
,
J. Chem. Phys.
124
,
024301
(
2006
).
32.
I. S.
Ufimtsev
and
T. J.
Martinez
,
J. Chem. Theory Comput.
5
,
2619
(
2009
).
33.
D.
Hankis
,
J. W.
Moskowitz
, and
F. H.
Stillinger
,
J. Chem. Phys.
53
,
4544
(
1970
).
34.
P.
Valiron
and
I.
Mayer
,
Chem. Phys. Lett.
275
,
46
(
1997
).
35.
L.
Turi
and
J. J.
Dannenberg
,
J. Phys. Chem.
97
,
2488
(
1993
).
36.
P.
Salvador
and
M. M.
Szcześniak
,
J. Chem. Phys.
118
,
537
(
2003
).
37.
B. H.
Wells
and
S.
Wilson
,
Chem. Phys. Lett.
101
,
429
(
1983
).
38.
M.
Gutowski
and
G.
Chałasiński
,
J. Chem. Phys.
98
,
5540
(
1993
).
39.
I.
Mayer
,
Int. J. Quantum Chem.
23
,
341
(
1983
).
41.
J.
Deng
,
A. T. B.
Gilbert
, and
P. M. W.
Gill
,
J. Chem. Phys.
135
,
081105
(
2011
).
42.
J. C.
Faver
,
Z.
Zheng
, and
J. K. M.
Merz
,
J. Chem. Phys.
135
,
144110
(
2011
).
43.
H.
Valdés
,
V.
Klusák
,
M.
Pitoňák
,
O.
Exner
,
I.
Starý
,
P.
Hobza
, and
L.
Rulíšek
,
J. Comput. Chem.
29
,
861
(
2008
).
44.
D.
Moran
,
A. C.
Simmonett
,
F. E.
Leach
,
W. D.
Allen
,
P. v. R.
Schleyer
, and
H. F.
Schaefer
,
J. Am. Chem. Soc.
128
,
9342
(
2006
).
45.
T.
van Mourik
,
P. G.
Karamertzanis
, and
S. L.
Price
,
J. Phys. Chem. A
110
,
8
(
2006
).
46.
L. F.
Holroyd
and
T.
van Mourik
,
Chem. Phys. Lett.
442
,
42
(
2007
).
47.
R. M.
Balabin
,
J. Chem. Phys.
129
,
164101
(
2008
).
48.
D.
Asturiol
,
M.
Duran
, and
P.
Salvador
,
J. Chem. Phys.
128
,
144108
(
2008
).
49.
R. M.
Balabin
,
J. Chem. Phys.
132
,
231101
(
2010
).
50.
A.
Galano
and
J. R.
Alvarez-Idaboy
,
J. Comput. Chem.
27
,
1203
(
2006
).
51.
F.
Jensen
,
J. Chem. Theory Comput.
6
,
100
(
2010
).
52.
D. B.
Cook
,
J. A.
Sordo
, and
T. L.
Sordo
,
Int. J. Quantum Chem.
48
,
375
(
1993
).
53.
R.
Wieczorek
,
L.
Haskamp
, and
J. J.
Dannenberg
,
J. Phys. Chem. A
108
,
6713
(
2004
).
54.
I.
Mayer
and
L.
Turi
,
J. Mol. Struct.: THEOCHEM
227
,
43
(
1991
), and references therein.
55.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
2427
(
2011
).
56.
C. C. J.
Roothaan
,
Rev. Mod. Phys.
32
,
179
(
1960
).
57.
R.
Ahlrichs
,
M. K.
Armbruster
,
M.
Bär
,
H.-P.
Baron
,
R.
Bauernschmitt
,
N.
Crawford
,
P.
Deglmann
,
M.
Ehrig
,
K.
Eichkorn
,
S.
Elliott
,
F.
Furche
,
F.
Haase
,
M.
Häser
,
C.
Hättig
,
A.
Hellweg
,
H.
Horn
,
C.
Huber
,
U.
Huniar
,
M.
Kattannek
,
C.
Kölmel
,
M.
Kollwitz
,
K.
May
,
P.
Nava
,
C.
Ochsenfeld
,
H.
Öhm
,
H.
Patzelt
,
D.
Rappoport
,
O.
Rubner
,
A.
Schäfer
,
U.
Schneider
,
M.
Sierka
,
O.
Treutler
,
B.
Unterreiner
,
M.
von Arnim
,
F.
Weigend
,
P.
Weis
, and
H.
Weiss
, TURBOMOLE (version. 5.9 and 6.3), Universität Karlsruhe 2008 &
2011
; see also http://www.turbomole.com.
58.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
59.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
240
,
283
(
1995
).
60.
A.
Herman
,
Modell. Simul. Mater. Sci. Eng.
12
,
21
(
2004
).
61.
See website by the group of Prof. Stefan Grimme for a FORTRAN program implementing the gCP method: http://www.thch.uni-bonn.de/tc.
63.
MAPLE 12, Maplesoft, http://www.maplesoft.com/, Waterloo ON, Canada.
64.
F.
Neese
, ORCA - an ab initio, density functional and semiempirical program package, Max Planck Institute for Bioinorganic Chemistry, D-45470 Muelheim/Ruhr, Germany,
2011
.
65.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
66.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
67.
B.
Miehlich
,
A.
Savin
,
H.
Stoll
, and
H.
Preuss
,
Chem. Phys. Lett.
157
,
200
(
1989
).
68.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
69.
Y.
Zhang
and
W.
Yang
,
Phys. Rev. Lett.
80
,
890
(
1998
).
70.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
71.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
109
,
5656
(
2005
).
72.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
73.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
74.
L.
Goerigk
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
13
,
6670
(
2011
).
75.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
76.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
 Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
O.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, GAUSSIAN 09, Revision A.02, Gaussian, Inc., Wallingford, CT,
2009
.
77.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
122
,
154101
(
2005
).
78.
E. R.
Johnson
and
A. D.
Becke
,
J. Chem. Phys.
123
,
024101
(
2005
).
79.
L.
Goerigk
and
S.
Grimme
,
J. Chem. Theory Comput.
7
,
291
(
2011
).
80.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
81.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
82.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
83.
F.
Weigend
,
F.
Furche
, and
R.
Ahlrichs
,
J. Chem. Phys.
119
,
12753
(
2003
).
84.
K. L.
Schuchardt
,
B. T.
Didier
,
T.
Elsethagen
,
L.
Sun
,
V.
Gurumoorthi
,
J.
Chase
,
J.
Li
, and
T. L.
Windus
,
J. Chem. Inf. Model.
47
,
1045
(
2007
).
86.
W. J.
Hehre
,
R.
Ditchfeld
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
87.
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
6
,
5119
(
2004
).
88.
F.
Neese
,
J. Comput. Chem.
24
,
1740
(
2003
).
89.
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
,
4285
(
2002
).
90.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
91.
K.
Eichkorn
,
F.
Weigend
,
O.
Treutler
, and
R.
Ahlrichs
,
Theor. Chem. Acc.
97
,
119
(
1997
).
92.
J. M. L.
Martin
,
C. W.
Bauschlicher
 Jr.
, and
A.
Ricca
,
Comput. Phys. Commun.
133
,
189
(
2001
).
93.
B. N.
Papas
and
H. F.
Schaefer
 III
,
J. Mol. Struct.: THEOCHEM
768
,
175
(
2006
).
94.
S.
Dressler
and
W.
Thiel
,
Chem. Phys. Lett.
273
,
71
(
1997
).
95.
V.
Termath
and
J.
Sauer
,
Chem. Phys. Lett.
255
,
187
(
1996
).
96.
E. R.
Johnson
,
R. A.
Wolkow
, and
G. A.
DiLabio
,
Chem. Phys. Lett.
394
,
334
(
2004
).
97.
J.
Gräfenstein
,
D.
Izotov
, and
D.
Cremer
,
J. Chem. Phys.
127
,
164113
(
2007
).
98.
F.
Neese
,
A.
Hansen
, and
D. G.
Liakos
,
J. Chem. Phys.
131
,
064103
(
2009
).
99.
F.
Neese
,
F.
Wennmohs
, and
A.
Hansen
,
J. Chem. Phys.
130
,
114108
(
2009
).
100.
D. G.
Liakos
,
A.
Hansen
, and
F.
Neese
,
J. Chem. Theory Comput.
7
,
76
(
2011
).
101.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
102.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
, and
J.
Olsen
,
Chem. Phys. Lett.
302
,
437
(
1999
).
103.
B.
Jeziorski
and
K.
Szalewicz
, in
Encyclopedia of Computational Chemisty
, edited by
P.
von Rague-Schleyer
(
Wiley
,
New York
,
1998
), Vol.
2
, p.
1376
.
104.
H.-J.
Werner
,
P. J.
Knowles
,
R.
Lindh
,
F. R.
Manby
, et al, MOLPRO, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net.
105.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
106.
P.
Jurečka
,
J.
Sponer
,
J.
Cerny
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
107.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
3466
(
2011
).
108.
L.
Goerigk
,
H.
Kruse
, and
S.
Grimme
,
Chem. Phys. Chem.
12
,
3421
(
2011
).
109.
See supplementary material at http://dx.doi.org/10.1063/1.3700154 for cartesian coordinates of the crambin conformers and tables with mean deviations for the S66 and S22 sets.
110.
T.
Takatani
,
E. G.
Hohenstein
,
M.
Malagoli
,
M. S.
Marshall
, and
C. D.
Sherrill
,
J. Chem. Phys.
132
,
144104
(
2010
).
111.
E. R.
Davidson
and
D.
Feller
,
Chem. Rev.
86
,
681
(
1986
).
112.
J. A.
Pople
, in
Modern Theoretical Chemistry
, edited by
H. F.
Schaefer
 III
(
Plenum
,
New York
,
1976
), Vol.
4
.
113.
W.
Kołos
,
Theor. Chem. Acc.
51
,
219
(
1979
).
114.
K.
Kitaura
and
K.
Morokuma
,
Int. J. Quantum Chem.
10
,
325
(
1976
).
115.
W.
Chen
and
M. S.
Gordon
,
J. Phys. Chem.
100
,
14316
(
1996
).
116.
R.
Cammi
,
R.
Bonaccorsi
, and
J.
Tomasi
,
Theor. Chem. Acc.
68
,
271
(
1985
).
117.
F.
Neese
,
A.
Hansen
,
F.
Wennmohs
, and
S.
Grimme
,
Acc. Chem. Res.
42
,
641
(
2009
).
118.
V. S.
Bryantsev
,
M. S.
Diallo
,
A. C.T.
van Duin
, and
W. A.
Goddard
 III
,
J. Chem. Theory Comput.
5
,
1016
(
2009
).
119.
H.
Umeda
,
Y.
Inadomi
,
T.
Watanabe
,
T.
Yagi
,
T.
Ishimoto
,
T.
Ikegami
,
H.
Tadano
,
T.
Sakurai
, and
U.
Nagashima
,
J. Comput. Chem.
31
,
2381
(
2010
).
120.
M.
Wojciechowski
and
M.
Cieplak
,
BioSystems
94
,
248
(
2008
).
121.
G.
Stracquadanio
and
G.
Nicosia
,
Comput. Chem. Eng.
35
,
464
(
2011
).
122.
L.
Goerigk
and
S.
Grimme
,
J. Chem. Theory Comput.
6
,
107
(
2010
).
123.
D.
Řeha
,
H.
Valdes
,
Vondrášek
,
P.
Hobza
,
A.
Abu-Riziq
,
B.
Crews
, and
M. S.
de Vries
,
Chem.-Eur. J.
11
,
6803
(
2005
).
124.
The OPENBABEL Package, version 2.3.1, see http://openbabel.org.
125.
N.
O'Boyle
,
M.
Banck
,
C.
James
,
C.
Morley
,
T.
Vandermeersch
, and
G.
Hutchison
,
J. Cheminf.
3
,
33
(
2011
).
126.
J. J. P.
Stewart
,
J. Mol. Model.
13
,
1173
(
2007
).
127.
M.
Korth
,
M.
Pitonǎk
,
J.
Řezáč
, and
P.
Hobza
,
J. Chem. Theory Comput.
6
,
344
(
2010
).
128.
M.
Korth
,
J. Chem. Theory Comput.
6
,
3808
(
2010
).
129.
J. J. P.
Stewart
, MOPAC2009, Stewart Computational Chemistry, Version 11.052W, available at http://openmopac.net.
130.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
,
J. Comput. Chem.
25
,
1157
(
2004
).
131.
G.
Schaftenaar
and
J. H.
Noordik
,
J. Comput.-Aided Mol. Des.
14
,
123
(
2000
).
132.
J.
Antony
,
S.
Grimme
,
D. G.
Liakos
, and
F.
Neese
,
J. Phys. Chem. A
115
,
11210
(
2011
).
133.
J. A.
Osborn
,
F. H.
Jardine
,
J. F.
Young
, and
G.
Wilkinson
,
J. Chem. Soc. A
1711
(
1966
).

Supplementary Material

You do not currently have access to this content.