Aggregation of amyloid-β (Aβ) peptides correlates with the pathology of Alzheimer's disease. However, the inter-molecular interactions between Aβ protofibril remain elusive. Herein, molecular mechanics Poisson-Boltzmann surface area analysis based on all-atom molecular dynamics simulations was performed to study the inter-molecular interactions in Aβ17-42 protofibril. It is found that the nonpolar interactions are the important forces to stabilize the Aβ17-42 protofibril, while electrostatic interactions play a minor role. Through free energy decomposition, 18 residues of the Aβ17-42 are identified to provide interaction energy lower than −2.5 kcal/mol. The nonpolar interactions are mainly provided by the main chain of the peptide and the side chains of nine hydrophobic residues (Leu17, Phe19, Phe20, Leu32, Leu34, Met35, Val36, Val40, and Ile41). However, the electrostatic interactions are mainly supplied by the main chains of six hydrophobic residues (Phe19, Phe20, Val24, Met35, Val36, and Val40) and the side chains of the charged residues (Glu22, Asp23, and Lys28). In the electrostatic interactions, the overwhelming majority of hydrogen bonds involve the main chains of Aβ as well as the guanidinium group of the charged side chain of Lys28. The work has thus elucidated the molecular mechanism of the inter-molecular interactions between Aβ monomers in Aβ17-42 protofibril, and the findings are considered critical for exploring effective agents for the inhibition of Aβ aggregation.

1.
A.
Naeem
and
N. A.
Fazili
,
Cell Biochem. Biophys.
61
,
237
(
2011
).
2.
M.
Bartolini
and
V.
Andrisano
,
Chembiochem
11
,
1018
(
2010
).
3.
F.
Chiti
and
C. M.
Dobson
,
Annu. Rev. Biochem.
75
,
333
(
2006
).
4.
R.
Jakob-Roetne
and
H.
Jacobsen
,
Angew. Chem. Int. Ed. Engl.
48
,
3030
(
2009
).
5.
A.
Lobo
,
R.
Lopez-Anton
,
J.
Santabarbara
,
C.
de-la-Camara
,
T.
Ventura
,
M. A.
Quintanilla
,
J. F.
Roy
,
A. J.
Campayo
,
E.
Lobo
,
T.
Palomo
,
R.
Rodriguez-Jimenez
,
P.
Saz
, and
G.
Marcos
,
Acta Psychiatr. Scand.
124
,
372
(
2011
).
6.
R.
Brookmeyer
,
E.
Johnson
,
K.
Ziegler-Graham
, and
H. M.
Arrighi
,
Alzheimers Dement.
3
,
186
(
2007
).
7.
D. J.
Selkoe
,
Nat. Cell Biol.
6
,
1054
(
2004
).
8.
J. A.
Hardy
and
G. A.
Higgins
,
Science
256
,
184
(
1992
).
9.
J.
Hardy
and
D. J.
Selkoe
,
Science
297
,
353
(
2002
).
10.
C.
Haass
and
D. J.
Selkoe
,
Nat. Rev. Mol. Cell Biol.
8
,
101
(
2007
).
11.
V. H.
Finder
and
R.
Glockshuber
,
Neurodegener. Dis.
4
,
13
(
2007
).
12.
W. L.
Klein
,
W. B.
Stine
 Jr.
, and
D. B.
Teplow
,
Neurobiol. Aging
25
,
569
(
2004
).
13.
W. L.
Klein
,
G. A.
Krafft
, and
C. E.
Finch
,
Trends Neurosci.
24
,
219
(
2001
).
14.
A.
Deshpande
,
E.
Mina
,
C.
Glabe
, and
J.
Busciglio
,
J. Neurosci.
26
,
6011
(
2006
).
15.
E.
Ferreiro
,
C. R.
Oliveira
, and
C. M.
Pereira
,
Neurobiol. Dis.
30
,
331
(
2008
).
16.
E.
Ferreiro
,
R.
Resende
,
R.
Costa
,
C. R.
Oliveira
, and
C. M.
Pereira
,
Neurobiol. Dis.
23
,
669
(
2006
).
17.
M.
Ahmed
,
J.
Davis
,
D.
Aucoin
,
T.
Sato
,
S.
Ahuja
,
S.
Aimoto
,
J. I.
Elliott
,
W. E.
Van Nostrand
, and
S. O.
Smith
,
Nat. Struct. Mol. Biol.
17
,
561
(
2010
).
18.
A. K.
Paravastu
,
I.
Qahwash
,
R. D.
Leapman
,
S. C.
Meredith
, and
R.
Tycko
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
7443
(
2009
).
19.
D. A.
Kirschner
,
C.
Abraham
, and
D. J.
Selkoe
,
Proc. Natl. Acad. Sci. U.S.A.
83
,
503
(
1986
).
20.
J. J.
Balbach
,
A. T.
Petkova
,
N. A.
Oyler
,
O. N.
Antzutkin
,
D. J.
Gordon
,
S. C.
Meredith
, and
R.
Tycko
,
Biophys. J.
83
,
1205
(
2002
).
21.
A. T.
Petkova
,
R. D.
Leapman
,
Z.
Guo
,
W. M.
Yau
,
M. P.
Mattson
, and
R.
Tycko
,
Science
307
,
262
(
2005
).
22.
T.
Luhrs
,
C.
Ritter
,
M.
Adrian
,
D.
Riek-Loher
,
B.
Bohrmann
,
H.
Dobeli
,
D.
Schubert
, and
R.
Riek
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
17342
(
2005
).
23.
J. A.
Lemkul
and
D. R.
Bevan
,
J. Phys. Chem. B
114
,
1652
(
2010
).
24.
M. H.
Viet
,
S. T.
Ngo
,
N. S.
Lam
, and
M. S.
Li
,
J. Phys. Chem. B
115
,
7433
(
2011
).
25.
M.
Han
and
U. H.
Hansmann
,
J. Chem. Phys.
135
,
065101
(
2011
).
26.
C.
Wu
,
M. T.
Bowers
, and
J. E.
Shea
,
Biophys. J.
100
,
1316
(
2011
).
27.
R. W.
Zwanzig
,
J. Chem. Phys.
22
,
1420
(
1954
).
28.
M. R.
Reddy
and
M. D.
Erion
,
J. Am. Chem. Soc.
123
,
6246
(
2001
).
29.
J.
Aqvist
,
C.
Medina
, and
J. E.
Samuelsson
,
Protein Eng.
7
,
385
(
1994
).
30.
J.
Srinivasan
,
T. E.
Cheatham
 3rd
,
P.
Cieplak
,
P. A.
Kollman
, and
D. A.
Case
,
J. Am. Chem. Soc.
120
,
9401
(
1998
).
31.
P. A.
Kollman
,
I.
Massova
,
C.
Reyes
,
B.
Kuhn
,
S.
Huo
,
L.
Chong
,
M.
Lee
,
T.
Lee
,
Y.
Duan
,
W.
Wang
,
O.
Donini
,
P.
Cieplak
,
J.
Srinivasan
,
D. A.
Case
, and
T. E.
Cheatham
 3rd
,
Acc. Chem. Res.
33
,
889
(
2000
).
32.
N. J.
Deng
and
P.
Cieplak
,
Phys. Chem. Chem. Phys.
11
,
4968
(
2009
).
33.
T.
Hou
,
J.
Wang
,
Y.
Li
, and
W.
Wang
,
J. Chem. Inf. Model.
51
,
69
(
2011
).
34.
N. J.
Bruce
,
D.
Chen
,
S. G.
Dastidar
,
G. E.
Marks
,
C. H.
Schein
, and
R. A.
Bryce
,
Peptides
31
,
2100
(
2010
).
35.
F. F.
Liu
,
X. Y.
Dong
,
L.
He
,
A. P.
Middelberg
, and
Y.
Sun
,
J. Phys. Chem. B
115
,
11879
(
2011
).
36.
W.
Xu
,
J.
Ping
,
W.
Li
, and
Y.
Mu
,
J. Chem. Phys.
130
,
164709
(
2009
).
37.
W. M.
Berhanu
and
A. E.
Masunov
,
Biopolymers
95
,
573
(
2011
).
38.
M. F.
Masman
,
U. L.
Eisel
,
I. G.
Csizmadia
,
B.
Penke
,
R. D.
Enriz
,
S. J.
Marrink
, and
P. G.
Luiten
,
J. Phys. Chem. B
113
,
11710
(
2009
).
39.
N. V.
Buchete
,
R.
Tycko
, and
G.
Hummer
,
J. Mol. Biol.
353
,
804
(
2005
).
40.
J.
Zheng
,
H.
Jang
,
B.
Ma
,
C. J.
Tsai
, and
R.
Nussinov
,
Biophys. J.
93
,
3046
(
2007
).
41.
J.
Zheng
,
X.
Yu
,
J.
Wang
,
J. C.
Yang
, and
Q.
Wang
,
J. Phys. Chem. B
114
,
463
(
2010
).
42.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kale
, and
K.
Schulten
,
J. Comput. Chem.
26
,
1781
(
2005
).
43.
A. D.
MacKerell
 Jr.
,
N.
Banavali
, and
N.
Foloppe
,
Biopolymers
56
,
257
(
2000
).
44.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
45.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
46.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
47.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
48.
U.
Essman
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
49.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
50.
V.
Zoete
,
M.
Meuwly
, and
M.
Karplus
,
Proteins
61
,
79
(
2005
).
51.
R. B.
Hermann
,
J. Phys. Chem.
76
,
2754
(
1972
).
52.
G. L.
Amidon
,
S. H.
Yalkowsky
,
S. T.
Anik
, and
S. C.
Valvani
,
J. Phys. Chem.
79
,
2239
(
1975
).
53.
A. A.
Gorfe
and
I.
Jelesarov
,
Biochemistry
42
,
11568
(
2003
).
54.
V.
Lafont
,
M.
Schaefer
,
R. H.
Stote
,
D.
Altschuh
, and
A.
Dejaegere
,
Proteins
67
,
418
(
2007
).
55.
T.
Hou
,
J.
Wang
,
Y.
Li
, and
W.
Wang
,
J. Comput. Chem.
32
,
866
(
2011
).
56.
B.
Huang
,
F. F.
Liu
,
X. Y.
Dong
, and
Y.
Sun
,
J. Phys. Chem. B
115
,
4168
(
2011
).
57.
B.
Huang
,
F. F.
Liu
,
X. Y.
Dong
, and
Y.
Sun
,
J. Phys. Chem. B
116
,
424
(
2012
).
58.
C.
Yan
,
T.
Kaoud
,
S.
Lee
,
K. N.
Dalby
, and
P.
Ren
,
J. Phys. Chem. B
115
,
1491
(
2011
).
59.
E.
Muzzioli
,
A.
Del Rio
, and
G.
Rastelli
,
Chem. Biol. Drug Des.
78
,
252
(
2011
).
60.
G.
Favrin
,
A.
Irback
, and
S.
Mohanty
,
Biophys. J.
87
,
3657
(
2004
).
61.
T.
Takeda
and
D. K.
Klimov
,
J. Phys. Chem. B
114
,
4755
(
2010
).
62.
G. A.
Jeffrey
,
An Introduction to Hydrogen Bonding
(
Oxford University Presse
,
Oxford
,
1997
).
63.
F. B.
Sheinerman
and
B.
Honig
,
J. Mol. Biol.
318
,
161
(
2002
).
You do not currently have access to this content.