A new integral estimate for four-center two-electron integrals is introduced that accounts for distance information between the bra- and ket-charge distributions describing the two electrons. The screening is denoted as QQR and combines the most important features of the conventional Schwarz screening by Häser and Ahlrichs published in 1989 [J. Comput. Chem.10, 104 (1989) https://doi.org/10.1002/jcc.540100111] and our multipole-based integral estimates (MBIE) introduced in 2005 [D. S. Lambrecht and C. Ochsenfeld, J. Chem. Phys.123, 184101 (2005) https://doi.org/10.1063/1.2079967]. At the same time the estimates are not only tighter but also much easier to implement, so that we recommend them instead of our MBIE bounds introduced first for accounting for charge-distance information. The inclusion of distance dependence between charge distributions is not only useful at the SCF level but is particularly important for describing electron-correlation effects, e.g., within AO-MP2 theory, where the decay behavior is at least 1/R4 or even 1/R6. In our present work, we focus on studying the efficiency of our QQR estimates within SCF theory and demonstrate the performance for a benchmark set of 44 medium to large molecules, where savings of up to a factor of 2 for exchange integrals are observed for larger systems. Based on the results of the benchmark set we show that reliable tightness of integral estimates is more important for the screening performance than rigorous upper bound properties.

1.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(
Macmillan
,
New York
,
1982
).
2.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York
,
1994
).
3.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
Wiley-VCH
,
Weinheim
,
2000
).
4.
R.
Ahlrichs
,
Theor. Chim. Acta
33
,
157
(
1974
).
5.
J.
Almlöf
,
K.
Faegri
, and
K.
Korsell
,
J. Comput. Chem.
3
,
385
(
1982
).
6.
D.
Cremer
and
J.
Gauss
,
J. Comput. Chem.
7
,
274
(
1986
).
7.
J. L.
Whitten
,
J. Chem. Phys.
58
,
4496
(
1973
).
8.
M.
Häser
and
R.
Ahlrichs
,
J. Comput. Chem.
10
,
104
(
1989
).
9.
P. M. W.
Gill
,
B. G.
Johnson
, and
J. A.
Pople
,
Chem. Phys. Lett.
217
,
65
(
1994
).
10.
C. A.
White
,
B. G.
Johnson
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
230
,
8
(
1994
).
11.
M.
Challacombe
,
E.
Schwegler
, and
J.
Almlöf
,
J. Chem. Phys.
104
,
4685
(
1996
).
12.
M. C.
Strain
,
G. E.
Scuseria
, and
M. J.
Frisch
,
Science
271
,
51
(
1996
).
13.
E.
Schwegler
,
M.
Challacombe
, and
M.
Head-Gordon
,
J. Chem. Phys.
106
,
9708
(
1997
).
14.
C.
Ochsenfeld
,
C. A.
White
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
1663
(
1998
).
15.
E.
Schwegler
and
M.
Challacombe
,
J. Chem. Phys.
111
,
6223
(
1999
).
16.
C.
Ochsenfeld
,
J.
Kussmann
, and
D. S.
Lambrecht
, in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
T. R.
Cundari
(
Wiley-VCH
,
2007
), Vol. 23, pp.
1
81
.
17.
C. A.
White
,
B. G.
Johnson
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
253
,
268
(
1996
).
18.
C.
Ochsenfeld
,
Chem. Phys. Lett.
327
,
216
(
2000
).
19.
B. G.
Johnson
,
C. A.
White
,
Q.
Zhang
,
B.
Chen
,
R. L.
Graham
,
P. M. W.
Gill
, and
M.
Head-Gordon
, in
Recent Developments and Applications of Modern Density Functional Theory
, edited by
J.
Seminario
(
Elsevier
,
Amsterdam
,
1996
), pp.
441
464
.
20.
P.
Sałek
,
S.
Høst
,
L.
Thøgersen
,
P.
Jørgensen
,
P.
Manninen
,
J.
Olsen
,
B.
Jansík
,
S.
Reine
,
F.
Pawłowski
,
E.
Tellgren
,
T.
Helgaker
, and
S.
Coriani
,
J. Chem. Phys.
126
,
114110
(
2007
).
21.
E.
Rudberg
,
E. H.
Rubensson
, and
P.
Sałek
,
J. Chem. Theory Comput.
7
,
340
(
2011
).
22.
C.
Ochsenfeld
,
J.
Kussmann
, and
F.
Koziol
,
Angew. Chem., Int. Ed.
43
,
4485
(
2004
).
23.
J.
Zienau
,
J.
Kussmann
, and
C.
Ochsenfeld
,
Mol. Phys.
108
,
333
(
2010
).
24.
C.
Ochsenfeld
and
M.
Head-Gordon
,
Chem. Phys. Lett.
270
,
399
(
1997
).
25.
J.
Kussmann
and
C.
Ochsenfeld
,
J. Chem. Phys.
127
,
054103
(
2007
).
26.
M.
Beer
,
J.
Kussmann
, and
C.
Ochsenfeld
,
J. Chem. Phys.
134
,
74102
(
2011
).
27.
D. S.
Lambrecht
and
C.
Ochsenfeld
,
J. Chem. Phys.
123
,
184101
(
2005
).
28.
J.
Almlöf
,
Chem. Phys. Lett.
181
,
319
(
1991
).
29.
M.
Häser
and
J.
Almlöf
,
J. Chem. Phys.
96
,
489
(
1992
).
30.
M.
Häser
,
Theor. Chim. Acta
87
,
147
(
1993
).
31.
A. K.
Wilson
and
J.
Almlöf
,
Theor. Chim. Acta
95
,
49
(
1997
).
32.
P. Y.
Ayala
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
3660
(
1999
).
33.
D. S.
Lambrecht
,
B.
Doser
, and
C.
Ochsenfeld
,
J. Chem. Phys.
123
,
184102
(
2005
).
34.
B.
Doser
,
D. S.
Lambrecht
,
J.
Kussmann
, and
C.
Ochsenfeld
,
J. Chem. Phys.
130
,
64107
(
2009
).
35.
B.
Doser
,
J.
Zienau
,
L.
Clin
,
D. S.
Lambrecht
, and
C.
Ochsenfeld
,
Z. Phys. Chem.
224
,
397
(
2010
).
36.
P.
Jurecka
,
J.
Sponer
,
J.
Cerný
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
38.
S. A.
Maurer
,
D. S.
Lambrecht
, and
C.
Ochsenfeld
, “
Efficient integral screening in linear-scaling Møller-Plesset perturbation theory
” (unpublished).
39.
J.
Almlöf
, in
Lecture Notes in Quantum Chemistry II
, Lecture Notes in Chemistry, Vol. 64, edited by
B.
Roos
(
Springer
,
Berlin
,
1994
).
40.
Y.
Shao
,
L. F.
Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
DiStasio
 Jr.
,
R. C.
Lochan
,
T.
Wang
,
G. J.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C.
Yeh Lin
,
T.
Van Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock
 III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
 III
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
41.
M.
Head-Gordon
and
J. A.
Pople
,
J. Chem. Phys.
89
,
5777
(
1988
).
42.
43.
T.
Van Voorhis
and
M.
Head-Gordon
,
Mol. Phys.
100
,
1713
(
2002
).
44.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
45.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
).
46.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
47.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
48.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
49.
P. M. W.
Gill
,
B. G.
Johnson
, and
J. A.
Pople
,
Chem. Phys. Lett.
209
,
506
(
1993
).
50.
See supplementary material at http://dx.doi.org/10.1063/1.3693908 for remaining figures and data tables.

Supplementary Material

You do not currently have access to this content.