We extend the orbital-specific-virtual tensor factorization, introduced for local Møller-Plesset perturbation theory in Ref. [J. Yang, Y. Kurashige, F. R. Manby and G. K. L. Chan, J. Chem. Phys.134, 044123 (2011) https://doi.org/10.1063/1.3528935], to local coupled cluster singles and doubles theory (OSV-LCCSD). The method is implemented by modifying an efficient projected-atomic-orbital local coupled cluster program (PAO-LCCSD) described recently, [H.-J. Werner and M. Schütz, J. Chem. Phys.135, 144116 (2011) https://doi.org/10.1063/1.3641642]. By comparison of both methods we find that the compact representation of the amplitudes in the OSV approach affords various advantages, including smaller computational time requirements (for comparable accuracy), as well as a more systematic control of the error through a single energy threshold. Overall, the OSV-LCCSD approach together with an MP2 correction yields small domain errors in practical calculations. The applicability of the OSV-LCCSD is demonstrated for molecules with up to 73 atoms and realistic basis sets (up to 2334 basis functions).

1.
J.
Yang
,
Y.
Kurashige
,
F. R.
Manby
, and
G. K. L.
Chan
,
J. Chem. Phys.
134
,
044123
(
2011
).
2.
U.
Benedikt
,
A. A.
Auer
,
M.
Espig
, and
W.
Hackbusch
,
J. Chem. Phys.
134
,
054118
(
2011
).
3.
J. L.
Whitten
,
J. Chem. Phys.
58
,
4496
(
1973
).
4.
N. H. F.
Beebe
and
J.
Linderberg
,
Int. J. Quantum Chem.
7
,
683
(
1977
).
5.
D. W.
O’Neal
and
J.
Simons
,
Int. J. Quantum Chem.
36
,
673
(
1989
).
6.
H.
Koch
,
A.
Sánchez de Merás
, and
T. B.
Pedersen
,
J. Chem. Phys.
118
,
9481
(
2003
).
7.
T.
Kinoshita
,
O.
Hino
, and
R. J.
Bartlett
,
J. Chem. Phys.
119
,
7756
(
2003
).
8.
F.
Aquilante
,
T. B.
Pedersen
, and
R.
Lindh
,
J. Chem. Phys.
126
,
194106
(
2007
).
9.
F.
Aquilante
and
T. B.
Pedersen
,
Chem. Phys. Lett.
449
,
354
(
2007
).
10.
F.
Weigend
,
M.
Kattannek
, and
R.
Ahlrichs
,
J. Chem. Phys.
130
,
164106
(
2009
).
11.
T. S.
Chwee
and
E. A.
Carter
,
J. Chem. Phys.
132
,
074104
(
2010
).
12.
H.-J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
J. Chem. Phys.
118
,
8149
(
2003
).
13.
F. R.
Manby
,
J. Chem. Phys.
119
,
4607
(
2003
).
14.
M.
Schütz
and
F. R.
Manby
,
Phys. Chem. Chem. Phys.
5
,
3349
(
2003
).
15.
H.-J.
Werner
and
M.
Schütz
,
J. Chem. Phys.
135
,
144116
(
2011
).
16.
17.
S.
Saebø
and
P.
Pulay
,
Chem. Phys. Lett.
113
,
13
(
1985
).
18.
P.
Pulay
and
S.
Saebø
,
Theor. Chim. Acta
69
,
357
(
1986
).
19.
S.
Saebø
and
P.
Pulay
,
J. Chem. Phys.
86
,
914
(
1987
).
20.
S.
Saebø
and
P.
Pulay
,
J. Chem. Phys.
88
,
1884
(
1988
).
21.
T. L.
Barr
and
E. R.
Davidson
,
Phys. Rev. A
1
,
644
(
1970
).
22.
A. G.
Taube
and
R. J.
Bartlett
,
Collect. Czech. Chem. Commun.
70
,
837
(
2005
).
23.
A. G.
Taube
and
R. J.
Bartlett
,
J. Chem. Phys.
128
,
164101
(
2008
).
24.
A.
Landau
,
K.
Khistyaev
,
S.
Dolgikh
, and
A. I.
Krylov
,
J. Chem. Phys.
132
,
014109
(
2010
).
25.
Z.
Rollik
and
M.
Kállay
,
J. Chem. Phys.
135
,
104111
(
2011
).
26.
C.
Edmiston
and
M.
Krauss
,
J. Chem. Phys.
42
,
1119
(
1965
).
27.
W.
Meyer
,
Int. J. Quantum Chem.
S5
,
341
(
1971
).
28.
W.
Meyer
,
J. Chem. Phys.
58
,
1017
(
1973
).
29.
R.
Ahlrichs
,
F.
Driessler
,
H.
Lischka
,
V.
Staemmler
, and
W.
Kutzelnigg
,
J. Chem. Phys.
62
,
1235
(
1975
).
30.
V.
Staemmler
and
R.
Jaquet
,
Theor. Chim. Acta
59
,
487
(
1981
).
31.
F.
Neese
,
F.
Wennmohs
, and
A.
Hansen
,
J. Chem. Phys.
130
,
114108
(
2009
).
32.
F.
Neese
,
A.
Hansen
, and
D. G.
Liakos
,
J. Chem. Phys.
131
,
064103
(
2009
).
33.
A.
Hansen
,
D. G.
Liakos
, and
F.
Neese
,
J. Chem. Phys.
135
,
214102
(
2011
).
34.
Y.
Kurashige
,
J.
Yang
,
G. K. L.
Chan
, and
F. R.
Manby
, “
Optimization of orbital-specific virtuals in local Møller-Plesset perturbation theory
,” J. Chem. Phys. (submitted).
35.
J. E.
Subotnik
and
M.
Head-Gordon
,
J. Chem. Phys.
123
,
064108
(
2005
).
36.
J. E.
Subotnik
,
A.
Sodth
, and
M.
Head-Gordon
,
J. Chem. Phys.
125
,
074116
(
2006
).
37.
J. E.
Subotnik
,
A.
Sodth
, and
M.
Head-Gordon
,
J. Chem. Phys.
128
,
034103
(
2008
).
38.
G. E.
Scuseria
and
P. Y.
Ayala
,
J. Chem. Phys.
111
,
8330
(
1999
).
39.
A.
Auer
and
M.
Nooijen
,
J. Chem. Phys.
125
,
024104
(
2006
).
40.
C.
Hampel
and
H.-J.
Werner
,
J. Chem. Phys.
104
,
6286
(
1996
).
41.
M.
Schütz
and
H.-J.
Werner
,
Chem. Phys. Lett.
318
,
370
(
2000
).
42.
M.
Schütz
,
J. Chem. Phys.
113
,
9986
(
2000
).
43.
M.
Schütz
and
H.-J.
Werner
,
J. Chem. Phys.
114
,
661
(
2001
).
44.
M.
Schütz
,
J. Chem. Phys.
116
,
8772
(
2002
).
45.
M.
Schütz
,
Phys. Chem. Chem. Phys.
4
,
3941
(
2002
).
46.
T. B.
Adler
and
H.-J.
Werner
,
J. Chem. Phys.
135
,
144117
(
2011
).
47.
H.-J.
Werner
and
K.
Pflüger
,
Annu. Rep. Comp. Chem.
2
,
53
(
2006
).
48.
P.
Pulay
,
S.
Saebø
, and
W.
Meyer
,
J. Chem. Phys.
81
,
1901
(
1984
).
49.
G. E.
Scuseria
,
C. L.
Janssen
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
89
,
7382
(
1988
).
50.
C.
Hampel
,
K. A.
Peterson
, and
H.-J.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1992
).
51.
M.
Schütz
,
G.
Hetzer
, and
H.-J.
Werner
,
J. Chem. Phys.
111
,
5691
(
1999
).
52.
R.
Mata
and
H.-J.
Werner
,
J. Chem. Phys.
125
,
184110
(
2006
).
53.
R.
Mata
and
H.-J.
Werner
,
Mol. Phys.
105
,
2753
(
2007
).
54.
D.
Kats
and
M.
Schütz
,
J. Chem. Phys.
131
,
124117
(
2009
).
55.
K.
Freundorfer
,
D.
Kats
,
T.
Korona
, and
M.
Schütz
,
J. Chem. Phys.
133
,
244110
(
2010
).
56.
J. W.
Boughton
and
P.
Pulay
,
J. Comput. Chem.
14
,
736
(
1993
).
57.
A. E.
Reed
,
R. B.
Weinstock
, and
F.
Weinhold
,
J. Chem. Phys.
83
,
735
(
1985
).
58.
J.
Pipek
and
J.
Ladik
,
Chem. Phys.
102
,
445
(
1986
).
59.
A. E.
Reed
and
F.
Weinhold
,
J. Chem. Phys.
83
,
1736
(
1985
).
60.
Note that Neese et al. used a different normalization in Eqs. (18), (19) of Ref. 31 for which we do not have a theoretical explanation. The normalization in Eq. (31) yields faster convergence of the correlation energy as a function of the average domain sizes than the normalization of Neese.
61.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
WIRES Comput. Mol. Sci.
2
,
242
(
2012
).
62.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
, et al MOLPRO, development version 2010.2, a package of ab initio programs (
2011
), see http://www.molpro.net.
63.
Note that in Eqs. (31) of Ref. 31 and (22) of Ref. 32 transformation matrices
${\protect \bf d}^{ij}$
dij
(which correspond to our
${\protect \bf Q}^{ij}$
Qij
) are missing between amplitudes and integrals.
64.
T. B.
Adler
,
H.-J.
Werner
, and
F. R.
Manby
,
J. Chem. Phys.
130
,
054106
(
2009
).
65.
See supplementary material at http://dx.doi.org/10.1063/1.3696963 for relevant cartesian coordinates of studied molecules.
66.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2001
).
67.
K. A.
Peterson
,
T. B.
Adler
, and
H.-J.
Werner
,
J. Chem. Phys.
128
,
084102
(
2008
).
68.
J. G.
Hill
,
K. A.
Peterson
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
131
,
194105
(
2009
).
69.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
70.
A.
Karton
and
J.
Martin
,
Theor. Chem. Acc.
115
,
330
(
2006
).
71.
R. A.
Mata
,
H.-J.
Werner
,
S.
Thiel
, and
W.
Thiel
,
J. Chem. Phys.
128
,
025104
(
2008
).
72.
F.
Claeyssens
,
J. N.
Harvey
,
F. R.
Manby
,
R. A.
Mata
,
A. J.
Mulholland
,
K. E.
Ranaghan
,
M.
Schütz
,
S.
Thiel
,
W.
Thiel
, and
H.-J.
Werner
,
Angew. Chem.
118
,
7010
(
2006
).
73.
J.
Pipek
and
P. G.
Mezey
,
J. Chem. Phys.
90
,
4916
(
1989
).
74.
P.
Jurečka
,
J.
Šponer
,
J.
Černý
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
75.
M.
Schütz
,
G.
Rauhut
, and
H.-J.
Werner
,
J. Phys. Chem. A
102
,
5997
(
1998
).
76.
J. G.
Hill
,
J. A.
Platts
, and
H.-J.
Werner
,
Phys. Chem. Chem. Phys.
8
,
4072
(
2006
).
77.
M.
Schütz
,
W.
Klopper
, and
H.-P.
Lüthi
,
J. Chem. Phys.
103
,
6114
(
1995
).
78.
O.
Marchetti
and
H.-J.
Werner
,
Phys. Chem. Chem. Phys.
10
,
3400
(
2008
).
79.
O.
Marchetti
and
H.-J.
Werner
,
J. Phys. Chem. A
113
,
11580
(
2009
).
80.
H.-J.
Werner
,
J. Chem. Phys.
129
,
101103
(
2008
).
81.
T. B.
Adler
and
H.-J.
Werner
,
J. Chem. Phys.
130
,
241101
(
2009
).

Supplementary Material

You do not currently have access to this content.