The weighted histogram analysis method (WHAM) is routinely used for computing free energies and expectations from multiple ensembles. Existing derivations of WHAM require observations to be discretized into a finite number of bins. Yet, WHAM formulas seem to hold even if the bin sizes are made arbitrarily small. The purpose of this article is to demonstrate both the validity and value of the multi-state Bennet acceptance ratio (MBAR) method seen as a binless extension of WHAM. We discuss two statistical arguments to derive the MBAR equations, in parallel to the self-consistency and maximum likelihood derivations already known for WHAM. We show that the binless method, like WHAM, can be used not only to estimate free energies and equilibrium expectations, but also to estimate equilibrium distributions. We also provide a number of useful results from the statistical literature, including the determination of MBAR estimators by minimization of a convex function. This leads to an approach to the computation of MBAR free energies by optimization algorithms, which can be more effective than existing algorithms. The advantages of MBAR are illustrated numerically for the calculation of absolute protein-ligand binding free energies by alchemical transformations with and without soft-core potentials. We show that binless statistical analysis can accurately treat sparsely distributed interaction energy samples as obtained from unmodified interaction potentials that cannot be properly analyzed using standard binning methods. This suggests that binless multi-state analysis of binding free energy simulations with unmodified potentials offers a straightforward alternative to the use of soft-core potentials for these alchemical transformations.

1.
A. M.
Ferrenberg
and
R. H.
Swendsen
, “
Optimized Monte Carlo data analysis
,”
Phys. Rev. Lett.
63
,
1195
1198
(
1989
).
2.
E.
Gallicchio
,
M.
Andrec
,
A. K.
Felts
, and
R. M.
Levy
, “
Temperature weighted histogram analysis method, replica exchange, and transition paths
,”
J. Phys. Chem. B
109
,
6722
6731
(
2005
).
3.
Free Energy Calculations. Theory and Applications in Chemistry and Biology
,
Springer Series in Chemical Physics
, edited by
C.
Chipot
and
A.
Pohorille
(
Springer
,
Berlin/Heidelberg
,
2007
).
4.
M. E. J.
Newman
and
G. T.
Barkema
,
Monte Carlo Methods in Statistical Physics
(
Oxford University Press
,
New York
,
1999
).
5.
C.
Bartels
and
M.
Karplus
, “
Multidimensional adaptive umbrella sampling: Application to main chain and side chain peptide conformations
,”
J. Comput. Chem.
18
,
1450
1462
(
1997
).
6.
F.
Zhu
and
G.
Hummer
, “
Convergence and error estimation in free energy calculations using the weighted histogram analysis method
,”
J. Comput. Chem.
(in press).
7.
C. J.
Geyer
, “
Estimating normalizing constants and reweighting mixtures in Markov chain Monte Carlo
,” Technical report, University of Minnesota, School of Statistics,
1994
.
8.
X.-L.
Meng
and
W. H.
Wong
, “
Simulating ratios of normalizing constants via a simple identity: A theoretical explanation
,”
Stat. Sin.
6
,
831
860
(
1996
).
9.
A.
Kong
,
P.
McCullagh
,
X.-L.
Meng
,
D.
Nicolae
, and
Z.
Tan
, “
A theory of statistical models for Monte Carlo integration
,”
J R. Stat. Soc. Ser. B (Stat. Methodol.)
65
,
585
618
(
2003
).
10.
Z.
Tan
, “
On a likelihood approach for Monte Carlo integration
,”
J. Am. Stat. Assoc.
99
(
468
),
1027
1036
(
2004
).
11.
M. R.
Shirts
and
J. D.
Chodera
, “
Statistically optimal analysis of samples from multiple equilibrium states
,”
J. Chem. Phys.
129
(
12
),
124105
(
2008
).
12.
C. H.
Bennett
, “
Efficient estimation of free energy differences from Monte Carlo data
,”
J. Comput. Phys.
22
(
2
),
245
268
(
1976
).
13.
N.
Lu
,
J. K.
Singh
, and
D. A.
Kofke
, “
Appropriate methods to combine forward and reverse free-energy perturbation averages
,”
J. Chem. Phys.
118
(
7
),
2977
2984
(
2003
).
14.
P.
Billingsley
,
Probability and Measure
(
Wiley
,
New York
,
1995
).
15.
J.
Nocedal
and
S. J.
Wright
,
Numerical Optimization
(
Springer-Verlag
,
New York
,
1999
).
16.
R.
Gill
,
Y.
Vardi
, and
J.
Wellner
, “
Large sample theory of empirical distributions in biased sampling models
,”
Ann. Stat.
16
,
1069
1112
(
1988
).
17.
M. R.
Chernick
,
Bootstrap Methods: A Guide for Practitioners and Researchers
, 2nd ed. (
Wiley
,
Hoboken, NJ
,
2008
).
18.
E.
Gallicchio
and
R. M.
Levy
, “
Recent theoretical and computational advances for modeling protein-ligand binding affinities
,” in
Advances in Protein Chemistry and Structural Biology
(
Academic
,
2011
), Vol.
85
, pp.
27
80
.
19.
M. K.
Gilson
,
J. A.
Given
,
B. L.
Bush
, and
J. A.
McCammon
, “
The statistical-thermodynamic basis for computation of binding affinities: A critical review
,”
Biophys. J.
72
,
1047
1069
(
1997
).
20.
D. L.
Mobley
and
K. A.
Dill
, “
Binding of small-molecule ligands to proteins: ‘what you see’ is not always ‘what you get’
,”
Structure (London)
17
(
4
),
489
498
(
2009
).
21.
Y.
Deng
and
B.
Roux
, “
Computations of standard binding free energies with molecular dynamics simulations
,”
J. Phys. Chem. B
113
(
8
),
2234
2246
(
2009
).
22.
J.
Michel
and
J. W.
Essex
, “
Prediction of protein-ligand binding affinity by free energy simulations: assumptions, pitfalls, and expectations
,”
J. Comput.-Aided Mol. Des.
24
(
8
),
639
658
(
2010
).
23.
J. D.
Chodera
,
D. L.
Mobley
,
M. R.
Shirts
,
R. W.
Dixon
,
K.
Branson
, and
V. S.
Pande
, “
Alchemical free energy methods for drug discovery: Progress and challenges
,”
Curr. Opin. Struct. Biol.
21
,
150
160
(
2011
).
24.
M. R.
Shirts
and
V. S.
Pande
, “
Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration
,”
J. Chem. Phys.
122
(
14
),
144107
(
2005
).
25.
A.
Pohorille
,
C.
Jarzynski
, and
C.
Chipot
, “
Good practices in free-energy calculations
,”
J. Phys. Chem. B
114
(
32
),
10235
10253
(
2010
).
26.
T.
Steinbrecher
,
D. L.
Mobley
, and
D. A.
Case
, “
Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations
,”
J. Chem. Phys.
127
(
21
),
214108
(
2007
).
27.
T.
Steinbrecher
,
I.
Joung
, and
D. A.
Case
, “
Soft-core potentials in thermodynamic integration: Comparing one- and two-step transformations
,”
J. Comput. Chem.
32
(
15
),
3253
3263
(
2011
).
28.
F. P.
Buelens
and
H.
Grubmüller
, “
Linear-scaling soft-core scheme for alchemical free energy calculations
,”
J. Comput. Chem.
33
(
1
),
25
33
(
2012
).
29.
E.
Gallicchio
,
M.
Lapelosa
, and
R. M.
Levy
, “
Binding energy distribution analysis method (BEDAM) for estimation of protein-ligand binding affinities
,”
J. Chem. Theory Comput.
6
(
9
),
2961
2977
(
2010
).
30.
M.
Lapelosa
,
E.
Gallicchio
, and
R. M.
Levy
, “
Conformational transitions and convergence of absolute binding free energy calculations
,”
J. Chem. Theory Comput.
8
,
47
60
(
2012
).
31.
S.
Kumar
,
D.
Bouzida
,
R. H.
Swendsen
,
P. A.
Kollman
, and
J. M.
Rosenberg
, “
The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method
,”
J. Comput. Chem.
13
,
1011
1021
(
1992
).
32.
E.
Gallicchio
and
R. M.
Levy
, “
Advances in all atom sampling methods for modeling protein-ligand binding affinities
,”
Curr. Opin. Struct. Biol.
21
(
2
),
161
166
(
2011
).
33.
C. D.
Christ
,
A. E.
Mark
, and
W. F.
van Gunsteren
, “
Basic ingredients of free energy calculations: a review
,”
J. Comput. Chem.
31
(
8
),
1569
1582
(
2010
).
34.
E.
Gallicchio
and
R. M.
Levy
, “
Prediction of sampl3 host-guest affinities with the binding energy distribution analysis method (BEDAM)
,”
J. Comp.-Aided Mol. Des.
(in press).
35.
H.
Paliwal
and
M. R.
Shirts
, “
A benchmark test set for alchemical free energy transformations and its use to quantify error in common free energy methods
,”
J. Chem. Theory Comput.
7
(
12
),
4115
4134
(
2011
).
36.
W.
Janke
, “
Statistical analysis of simulations: Data correlations and error estimation
,” in
Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms
(
John von Neumann Institute for Computing
,
Jülich, Germany
,
2002
), pp.
423
445
.
37.
D. A.
Holt
,
J. I.
Luengo
,
D. S.
Yamashita
,
H. J.
Oh
,
A. L.
Konialian
,
H. K.
Yen
,
L. W.
Rozamus
,
M.
Brandt
, and
M. J.
Bossard
, “
Design, synthesis, and kinetic evaluation of high-affinity fkbp ligands and the x-ray crystal structures of their complexes with fkbp12
,”
J. Am. Chem. Soc.
115
(
22
),
9925
9938
(
1993
).
38.
J.
Wang
,
Y.
Deng
, and
B.
Roux
, “
Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials
,”
Biophys. J.
91
(
8
),
2798
2814
(
2006
).
39.
H.
Fujitani
,
Y.
Tanida
,
M.
Ito
,
J.
Guha
,
C.
D Snow
,
M. R.
Shirts
,
E. J.
Sorin
, and
V. S.
Pande
, “
Direct calculation of the binding free energies of fkbp ligands
,”
J. Chem. Phys.
123
(
8
),
084108
(
2005
).
40.
C. J.
Geyer
,
Trust region optimization
, R package 0.1-2.,
2009
, see http://www.stat.umn.edu/geyer/trust/.
41.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
New York
,
1993
).
You do not currently have access to this content.