We performed off-lattice Monte Carlo simulations of links of two model ring chains with chain length N up to 32 768 in the theta solution or amorphous bulk state by using a random walk model (Model I), and molecular dynamics simulations of two model ring chains in solution with excluded volume interaction (Model II) to investigate topological effects on the geometry of link and ring conformation. In the case of Model I, the mean squared linking number, its distribution, and the size of two chains with fixed linking number are investigated. Our simulation results confirm the previous theoretical prediction that the mean squared linking number decays as |$pe^{ - qs^2 }$|peqs2 with the distance of centers of chain mass s, where p and q are found to be chain length dependent and q asymptotically approaches to 0.75 as chain length increases. The linking number distribution of two chains has a universal form for long chains, but our simulation results clearly show that the distribution function deviates from the Gaussian distribution, a fact not predicted by any previous theoretical work. A scaling prediction is proposed to predict the link size, and is checked for our simulations for the Model II. The simulation results confirmed the scaling prediction of the blob picture that the link with linking number m occupies a compact volume of m blobs, and the size of the link is asymptotic to RLbNνm1/3 − ν, where N is the chain length, and v is the Flory exponent of polymer in solutions.

1.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University
,
Ithaca
,
1979
).
2.
M.
Doi
and
H.
See
,
Introduction to Polymer Physics
(
Oxford University Press
,
Oxford
,
1996
).
3.
A. Y.
Grosberg
,
A.
Feigel
, and
Y.
Rabin
,
Phys. Rev. E
54
,
6618
(
1996
).
4.
5.
P.
Virnau
,
Y.
Kantor
, and
M.
Kardar
,
J. Am. Chem. Soc.
127
,
15102
(
2005
).
6.
A. V.
Vologodskii
,
A. V.
Lukashin
,
M. D.
Frank-Kamenetskii
, and
V. V.
Anshelevich
,
Sov. Phys. JETP
39
,
1059
(
1974
).
7.
K.
Kleanthes
and
M.
Muthukumar
,
J. Chem. Phys.
95
,
2873
(
1991
).
8.
B.
Marcone
,
E.
Orlandini
, and
A. L.
Stella
,
Phys. Rev. E
76
,
051804
(
2007
).
9.
K.
Millett
,
A.
Dobay
, and
A.
Stasiak
,
Macromolecules
38
,
601
(
2005
).
10.
H.-Q.
Sun
,
L.
Zhang
, and
Q.
Liao
,
J. Phys. Chem. B
114
,
12293
(
2010
).
11.
E.
Orlandini
and
S. G.
Whittington
,
Rev. Mod. Phys.
79
,
611
(
2007
).
12.
A. L.
Kholodenko
and
T. A.
Vilgis
,
Phys. Rep.
298
,
251
(
1998
).
13.
S. F.
Edwards
,
Proc. Phys. Soc. London
91
,
513
(
1967
).
14.
S. F.
Edwards
,
J. Phys. Gen. Phys.
1
,
15
(
1968
).
15.
K.
Iwata
and
T.
Kimura
,
J. Chem. Phys.
74
,
2039
(
1981
).
16.
K.
Iwata
,
J. Chem. Phys.
78
,
2778
(
1983
).
17.
F.
Tanaka
,
Prog. Theor. Phys.
68
,
148
(
1982
).
18.
F.
Tanaka
,
Prog. Theor. Phys.
68
,
164
(
1982
).
19.
S. D.
Levene
,
C.
Donahue
,
T. C.
Boles
, and
N. R.
Cozzarelli
,
Biophys. J.
69
,
1036
(
1995
).
20.
N.
Hirayama
,
K.
Tsurusaki
, and
T.
Deguchi
,
J. Phys. A: Math. Theor.
42
,
105001
(
2009
).
21.
A. D.
Bates
and
A.
Maxwell
,
DNA Topology
(
Oxford University Press
,
Oxford
,
2005
).
22.
K. V.
Klenin
,
A. V.
Vologodskii
,
V. V.
Anshelevich
,
A. M.
Dykhne
, and
M. D.
Frank-Kamenetskii
,
J. Biomol. Struct. Dyn.
5
,
1173
(
1988
).
23.
P.
Plunkett
,
M.
Piatek
,
A.
Dobay
,
J. C.
Kern
,
K. C.
Millett
,
A.
Stasiak
, and
E. J.
Rawdon
,
Macromolecules
40
,
3860
(
2007
).
25.
J.
Arsuaga
,
T.
Blackstone
,
Y.
Diao
,
E.
Karadayi
, and
M.
Saito
,
J. Phys. A: Math. Theor.
40
,
1925
(
2007
).
26.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
. (
Oxford University Press
,
Oxford
,
1989
).
27.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulations
(
Academic
,
San Diego
,
2001
).
28.
K.
Kremer
and
S. G.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
29.
J. D.
Cloizeaux
,
J. Physique Lett.
42
,
433
(
1981
).
You do not currently have access to this content.