Non-equilibrium molecular dynamics simulations of boundary-driven sheared Lennard-Jones liquids at variable pressure up to 5 GPa (for argon) reveal a rich out-of-equilibrium phase behavior with a strong degree of shear localization. At the lowest apparent shear rate considered (wall speed ∼1 m s−1) the confined region is an homogeneously sheared solid (S) with no slip at the walls. This transforms at higher shear rates to a non-flowing plug with slip at the walls, referred to as the plug slip (PS) state. At higher shear rate a central localized (CL) state formed in which the shear gradient was localized in the center of the film, with the rest of the confined sample in a crystalline state commensurate with the wall lattice. The central zone liquidlike region increased in width with shear rate. A continuous rounded temperature profile across the whole system reflects strong dynamical coupling between the wall and confined region. The temperature rise in the confined film is consistent with the Brinkman number. The transition from the PS to CL states typically occurred at a wall speed near where the shear stress approached a critical value of ∼3% of the shear modulus, and also near the peak in the traction coefficient, μ. The peak traction coefficient values computed, ∼0.12 − 0.14 at 1000 MPa agree with those found for traction fluids and occur when the confined liquid is in the PS and CL states. At low wall speeds slip can occur at one wall and stick at the other. Poorly wetting liquids manifest long-lived asymmetries in the confined liquid properties across the system, and a shift in solid-liquid phase co-existence to higher shear rates. A non-equilibrium phase diagram based on these results is proposed. The good agreement of the tribological response of the Lennard-Jones fluid with that of more complicated molecular systems suggests that a corresponding states scaling of the tribological behavior could apply.

1.
H.
Docherty
and
P. T.
Cummings
,
Soft Matter
6
,
1640
(
2010
).
2.
R.
Pit
,
H.
Hervet
, and
L.
Léger
,
Phys. Rev. Lett.
85
,
980
(
2000
).
3.
H.
Spikes
and
S.
Granick
,
Langmuir
19
,
5065
(
2003
).
4.
E.
Bonaccurso
,
M.
Kappl
, and
H.-J.
Butt
,
Phys. Rev. Lett.
88
,
076103
(
2002
).
5.
W. T.
Ashurst
and
W. G.
Hoover
,
Phys. Rev. A
11
,
658
(
1975
).
6.
S. Y.
Liem
,
D.
Brown
, and
J. H. R.
Clarke
,
Phys. Rev. A
45
,
3706
(
1992
).
7.
J.
Petravic
and
P.
Harrowell
,
J. Chem. Phys.
124
,
014103
(
2006
).
8.
S. A.
Gupta
,
H. D.
Cochran
, and
P. T.
Cummings
,
J. Chem. Phys.
107
,
10335
(
1997
).
9.
P. A.
Thompson
and
M. O.
Robbins
,
Phys. Rev. A
41
,
6830
(
1990
).
10.
A. Levent
Demeril
and
S.
Granick
,
J. Chem. Phys.
115
,
1498
(
2001
).
11.
M.
Cieplak
,
J.
Koplik
, and
J. R.
Banavar
,
Phys. Rev. Lett.
86
,
803
(
2001
).
12.
P. A.
Thompson
and
S. M.
Troian
,
Nature (London)
389
,
360
(
1997
).
13.
N. V.
Priezjev
,
Phys. Rev. E
75
,
051605
(
2007
).
14.
A. A.
Pahlavan
and
J. B.
Freund
,
Phys. Rev. E
83
,
021602
(
2011
).
15.
B. D.
Todd
,
D. J.
Evans
,
K. P.
Travis
, and
P. J.
Daivis
,
J. Chem. Phys.
111
,
10730
(
1999
).
16.
L.
Zhu
,
C.
Neto
, and
P.
Attard
,
Langmuir
28
,
3465
(
2012
).
17.
E.
Manias
,
G.
Hadziioannou
,
I.
Bitsanis
, and
G.
ten Brinke
,
Europhys. Lett.
24
,
99
(
1993
).
18.
T. M.
Galea
and
P.
Attard
,
Langmuir
20
,
3477
(
2004
).
19.
A. V.
Mokshin
and
J.-L.
Barrat
,
Phys. Rev. E
77
,
021505
(
2008
).
20.
F.
Varnik
,
L.
Bocquet
,
J.-L.
Barrat
, and
L.
Berthier
,
Phys. Rev. Lett.
90
,
095702
(
2003
).
21.
D.
Weiare
,
J. D.
Barry
, and
S.
Hutzler
,
J. Phys.: Condens. Matter
22
,
193101
(
2010
).
22.
P.
Schall
and
M.
van Hecke
,
Annu. Rev. Fluid Mech.
42
,
67
(
2010
).
23.
S.
Bair
and
C.
McCabe
,
Tribol. Int.
37
,
783
(
2004
).
24.
S.
Manneville
,
A.
Colin
,
G.
Waton
, and
F.
Schosseler
,
Phys. Rev. E
75
,
061502
(
2007
).
25.
P. C. F.
Moller
,
J.
Mewis
, and
D.
Bonn
,
Soft Matter
2
,
274
(
2006
).
26.
S. P.
Meeker
,
R. T.
Bonnecaze
, and
M.
Cloitre
,
Phys. Rev. Lett.
92
,
198302
(
2004
).
27.
Y.
Zhang
and
A. L.
Greer
,
Appl. Phys. Lett.
89
,
071907
(
2006
).
28.
J. S.
Hansen
,
P. J.
Daivis
,
K. P.
Travis
, and
B. D.
Todd
,
Phys. Rev. E
77
,
041121
(
2007
).
29.
R. M.
Puscasu
,
B. D.
Todd
,
P. J.
Daivis
, and
J. S.
Hansen
,
J. Phys.: Condens. Matter
22
,
195105
(
2010
).
30.
S.
Bair
,
F.
Qureshi
, and
W. O.
Winer
,
ASME J. Tribol.
115
,
507
(
1993
).
31.
S.
Bair
,
F.
Qureshi
, and
M.
Khonsara
,
ASME J. Tribol.
116
,
705
(
1994
).
32.
D. M.
Heyes
,
J. Chem. Soc., Faraday Trans. 2
82
,
1365
(
1986
).
33.
S.
Butler
and
P.
Harrowell
,
Nature (London)
415
,
1008
(
2002
).
34.
J.
Ge
,
G.-W.
Wu
,
B. D.
Todd
, and
R. J.
Sadus
,
J. Chem. Phys.
119
,
11017
(
2003
).
35.
L.
Angelani
,
G.
Ruocco
,
F.
Sciortino
,
P.
Tartaglia
, and
F.
Zamponi
,
Phys. Rev. E
66
,
061505
(
2002
).
36.
D. M.
Heyes
,
J. J.
Kim
,
C. J.
Montrose
, and
T. A.
Litovitz
,
J. Chem. Phy.
73
,
3987
(
1980
).
37.
J. H.
Simmons
,
R. K.
Mohr
, and
C. J.
Montrose
,
J. Appl. Phy.
53
,
4075
(
1982
).
38.
J.-L.
Barrat
and
L.
Bocquet
,
Phys Rev. Lett.
82
,
4671
(
1999
).
39.
S.
Butler
and
P.
Harrowell
,
J. Chem. Phys.
118
,
4115
(
2003
).
40.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford
,
1987
), p.
80
.
41.
S.
Bernardi
,
B. D.
Todd
, and
D. J.
Searles
,
J. Chem. Phys.
132
,
244706
(
2010
).
42.
R.
Khare
,
J.
de Pablo
, and
A.
Yethiraj
,
J. Chem. Phys.
111
,
10732
(
1999
).
43.
S.
Butler
and
P.
Harrowell
,
Phys. Rev. E
67
,
051503
(
2003
).
44.
L. V.
Woodcock
,
Chem. Phys. Lett.
10
,
257
(
1971
).
45.
T.
Divoux
,
D.
Tamarii
,
C.
Barentin
, and
S.
Mannevile
,
Phys. Rev. Lett.
104
,
208301
(
2010
).
46.
R.
Agrawal
and
D. A.
Kofke
,
Mol. Phys.
85
,
43
(
1995
).
47.
L.
Isa
,
R.
Besseling
, and
W. C. K.
Poon
,
Phys Rev. Lett.
98
,
198305
(
2007
).
48.
N.
Xu
,
C. S.
O’Hern
, and
L.
Kondic
,
Phys Rev. Lett.
94
,
016001
(
2005
).
49.
C.
Liu
and
Z.
Li
,
J. Chem. Phys.
132
,
24507
(
2010
).
50.
J.-L.
Barrat
and
F.
Chiaruttini
,
Mol. Phys.
101
,
1605
(
2003
).
51.
J. W.
Lyver
 IV
and
E.
Blaisten-Barojas
,
J. Phys.: Condens. Matter
21
,
345402
(
2009
).
52.
D. M.
Heyes
,
E. R.
Smith
,
D.
Dini
, and
T. A.
Zaki
,
J. Chem. Phys.
135
,
024512
(
2011
).
53.
S. H.
Loewenthal
and
D. A.
Rohn
, NASA Technical Paper 2154, May
1983
.
54.
S.
Bair
,
High-Pressure Rheology for Quantitive Elastohydrodynamics
(
Elsevier
,
Oxford
,
2007
), p.
194
.
55.
N.
Fang
,
L.
Chang
,
M. N.
Webster
, and
A.
Jackson
,
Tribol. Int.
33
,
751
(
2000
).
56.
H.
Hu
,
G. A.
Carson
, and
S.
Granick
,
Phys. Rev. Lett.
66
,
2758
(
1991
).
57.
J.
Goyon
,
A.
Colin
,
G.
Ovarlez
,
A.
Ajdari
, and
L.
Bocquet
,
Nature (London)
454
,
84
(
2008
).
58.
L.-B.
Chen
and
C. F.
Zukoski
,
J. Chem. Soc., Faraday Trans.
86
,
2629
(
1990
).
59.
D.
Tabor
,
Gases, Liquids and Solids
, 3rd ed. (
Cambridge University Press
,
Cambridge
,
1991
), pp.
211
213
.
60.
D. M.
Heyes
,
J. Chem. Soc., Faraday Trans. 2
85
,
239
(
1989
).
61.
D. M.
Heyes
and
R.
Szczepanski
,
J. Chem. Soc., Faraday Trans. 2
83
,
319
(
1987
).
62.
B.-Y.
Cao
,
J. Chem. Phys.
129
,
074106
(
2008
).
63.
J.-P.
Ryckaert
,
A.
Bellemans
,
G.
Ciccotti
, and
G. V.
Paolini
,
Phys Rev. Lett.
60
,
128
(
1988
).
64.
D. M.
Heyes
and
J. G.
Powles
,
Mol. Phys.
99
,
1077
(
2001
).
65.
K. V.
Tretiakov
and
S.
Scandolo
,
J. Chem. Phys.
120
,
3765
(
2004
).
66.
L. V.
Woodcock
,
AIChE J.
52
,
438
(
2006
).
67.
L. V.
Woodcock
,
Phys Rev. Lett.
54
,
1513
(
1985
).
68.
A. J.
Hopkins
,
F. S.
Jardali
, and
L. V.
Woodcock
,
Mol. Simul.
4
,
241
(
1989
).
69.
S.
Bair
,
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
223
,
617
(
2009
).
70.
H.
Yamano
,
K.
Shiota
,
R.
Miura
,
M.
Katagiri
,
M.
Kubo
,
A.
Stirling
,
E.
Broclawik
,
A.
Miyamoto
, and
T.
Tsubouchi
,
Thin Solid Films
281
,
598
(
1996
).
71.
T.
Tsubouchi
and
H.
Hata
,
Tribol. Int.
28
,
335
(
1995
).
72.
W.
Humphrey
,
A.
Dalke
and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
You do not currently have access to this content.