The (HCOOH)2 anion, formed by electron attachment to the formic acid dimer (FA2), is an archetypal system for exploring the mechanics of the electron-induced proton transfer motif that is purported to occur when neutral nucleic acid base-pairs accommodate an excess electron [K. Aflatooni, G. A. Gallup, and P. D. Burrow, J. Phys. Chem. A102, 6205 (1998)

; J. H. Hendricks, S. A. Lyapustina, H. L. de Clercq, J. T. Snodgrass, and K. H. Bowen, J. Chem Phys.104, 7788 (1996); C. Desfrancois, H. Abdoul-Carime, and J. P. Schermann, J. Chem Phys.104, 7792 (1996)]. The FA2 anion and several of its H/D isotopologues were isolated in the gas phase and characterized using Ar-tagged vibrational predissociation and electron autodetachment spectroscopies. The photoelectron spectrum of the FA2 anion was also recorded using velocity-map imaging. The resulting spectroscopic information verifies the equilibrium FA2 geometry predicted by theory which features a symmetrical, double H-bonded bridge effectively linking together constituents that most closely resemble the formate ion and a dihydroxymethyl radical. The spectroscopic signatures of this ion were analyzed with the aid of calculated anharmonic vibrational band patterns.

1.
K.
Aflatooni
,
G. A.
Gallup
, and
P. D.
Burrow
,
J. Phys. Chem. A
102
,
6205
(
1998
);
J. H.
Hendricks
,
S. A.
Lyapustina
,
H. L. de
Clercq
,
J. T.
Snodgrass
, and
K. H.
Bowen
,
J. Chem. Phys.
104
,
7788
(
1996
);
C.
Desfrancois
,
H.
Abdoul-Carime
, and
J. P.
Schermann
,
J. Chem. Phys.
104
,
7792
(
1996
).
2.
G.
Renger
,
Biochim. Biophys. Acta
1655
,
195
(
2004
).
3.
Z.
Cai
and
M. D.
Sevilla
,
Long-Range Charge Transfer in DNA II
, edited by
G. B.
Schuster
(
Springer
,
2004
), Vol.
237
, p.
103
.
4.
B.
Boudaiffa
,
P.
Cloutier
,
D.
Hunting
,
M. A.
Huels
, and
L.
Sanche
,
Science
287
,
1658
(
2000
);
[PubMed]
F.
Martin
,
P. D.
Burrow
,
Z.
Cai
,
P.
Cloutier
,
D.
Hunting
, and
L.
Sanche
,
Phys. Rev. Lett.
93
,
068101
(
2004
).
[PubMed]
5.
R.
Barrios
,
P.
Skurski
, and
J.
Simons
,
J. Phys. Chem. B
106
,
7991
(
2002
);
M.
Gutowski
,
I.
Dabkowska
,
J.
Rak
,
S.
Xu
,
J. M.
Nilles
,
D.
Radisic
 et al,
Eur. Phys. J. D
20
,
431
(
2002
);
X.
Li
,
M. D.
Sevilla
, and
L.
Sanche
,
J. Am. Chem. Soc.
125
,
13668
(
2003
);
[PubMed]
I.
Dabkowska
,
J.
Rak
, and
M.
Gutowski
,
Eur. J. Phys. D
35
,
429
(
2005
);
C. E.
Hamilton
,
J. L.
Kinsey
, and
R. W.
Field
,
Ann. Rev. Phys. Chem.
37
,
493
(
1986
).
6.
A.
Szyperska
,
J.
Rak
,
J.
Leszczynski
,
X.
Li
,
Y. J.
Ko
,
H.
Wang
 et al,
J. Am. Chem. Soc.
131
,
2663
(
2009
);
[PubMed]
A.
Szyperska
,
J.
Rak
,
J.
Leszczynski
,
X.
Li
,
Y. J.
Ko
,
H.
Wang
 et al,
ChemPhysChem
11
,
880
(
2010
).
[PubMed]
7.
E.
Nir
,
K.
Kleinermanns
, and
M. S.
de Vries
,
Nature
408
,
949
(
2000
);
[PubMed]
I.
Dabkowska
,
J.
Rak
,
M.
Gutowski
,
J. M.
Nilles
,
S. T.
Stokes
,
D.
Radisic
 et al,
Phys. Chem. Chem. Phys.
6
,
4351
(
2004
).
8.
D.
Radisic
,
K. H.
Bowen
,
I.
Dabkowska
,
P.
Storoniak
,
J.
Rak
, and
M.
Gutowski
,
J. Am. Chem. Soc.
127
,
6443
(
2005
).
9.
S.
Scheiner
and
C. W.
Kern
,
J. Am. Chem. Soc.
101
,
4081
(
1979
);
S.
Kishida
and
K.
Nakamoto
,
J. Chem. Phys.
41
,
1558
(
1964
);
E.
Clementi
,
J.
Mehl
, and
W.
von Niessen
,
J. Chem. Phys.
54
,
508
(
1971
).
10.
R. A.
Bachorz
,
M.
Haranczyk
,
I.
Dabkowska
,
J.
Rak
, and
M.
Gutowski
,
J. Chem. Phys.
122
,
204304
(
2005
).
11.
J.-W.
Shin
,
N. I.
Hammer
,
M. A.
Johnson
,
H.
Schneider
,
A.
Gloss
, and
J. M.
Weber
,
J. Phys. Chem. A
109
,
3146
(
2005
);
[PubMed]
R. N.
Compton
,
P. W.
Reinhardt
, and
C. D.
Cooper
,
J. Chem. Phys.
63
,
3821
(
1975
).
13.
M. A.
Johnson
and
W. C.
Lineberger
,
Techniques for the Study of Ion-Molecule Reactions
, edited by
J. M.
Farrar
and
W. H.
Saunders
 Jr.
(
Wiley
,
1988
), Vol.
XX
, p.
591
.
14.
C. E.
Klots
,
J. Chem. Phys.
83
,
5854
(
1985
);
P.
Ayotte
,
G. H.
Weddle
,
J.
Kim
, and
M. A.
Johnson
,
J. Am. Chem. Soc.
120
,
12361
(
1998
);
P.
Ayotte
,
J.
Kim
,
J. A.
Kelley
,
S. B.
Nielsen
, and
M. A.
Johnson
,
J. Am. Chem. Soc.
121
,
6950
(
1999
);
E. J.
Bieske
and
O.
Dopfer
,
Chem. Rev.
100
,
3963
(
2000
);
[PubMed]
J. M.
Weber
,
J. A.
Kelley
,
S. B.
Nielsen
,
P.
Ayotte
, and
M. A.
Johnson
,
Science
287
,
2461
(
2000
);
[PubMed]
D. M.
Neumark
,
K. R.
Lykke
,
T.
Andersen
, and
W. C.
Lineberger
,
J. Chem. Phys.
83
,
4364
(
1985
).
15.
H. K.
Gerardi
,
K. J.
Breen
,
T. L.
Guasco
,
G. H.
Weddle
,
G. H.
Gardenier
,
J. E.
Laaser
 et al,
J. Phys. Chem. A
114
,
1592
(
2010
).
16.
B. M.
Elliott
,
L. R.
McCunn
, and
M. A.
Johnson
,
Chem. Phys. Lett.
467
,
32
(
2008
).
17.
L. A.
Posey
and
M. A.
Johnson
,
J. Chem. Phys.
89
,
4807
(
1988
).
18.
A. T. J. B.
Eppink
and
D. H.
Parker
,
Rev. Sci. Instrum.
68
,
3477
(
1997
);
V.
Dribinski
,
A.
Ossadtchi
,
V. A.
Mandelshtam
, and
H.
Reisler
,
Rev. Sci. Instrum.
73
,
2634
(
2002
);
A.
Sanov
and
R.
Mabbs
,
Int. Rev. Phys. Chem.
27
,
53
(
2008
).
19.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 09, Revision A.02 (Gaussian, Inc., Wallingford, CT,
2009
).
20.
T. H.
Dunning
Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
);
R. A.
Kendall
,
T. H.
Dunning
 Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
21.
V.
Barone
,
J. Chem. Phys.
122
,
014108
(
2005
).
22.
C. L.
Adams
,
H.
Schneider
,
K. M.
Ervin
, and
J. M.
Weber
,
J. Chem. Phys.
130
,
074307
(
2009
).
23.
J. H.
Hendricks
,
H. L. de
Clercq
,
C. B.
Freidhoff
,
S. T.
Arnold
,
J. G.
Eaton
,
C.
Fancher
 et al,
J. Chem. Phys.
116
,
7926
(
2002
);
H.
Schneider
,
K.
Takahashi
,
R. T.
Skodje
, and
J. M.
Weber
,
J. Chem. Phys.
130
,
174302
(
2009
).
[PubMed]
24.
H. K.
Gerardi
,
A. F.
DeBlase
,
X.
Su
,
K. D.
Jordan
,
A. B.
McCoy
, and
M. A.
Johnson
,
J. Phys. Chem. Lett.
2
,
2437
(
2011
).
25.
J. R.
Roscioli
,
L. R.
McCunn
, and
M. A.
Johnson
,
Science
316
,
249
(
2007
).
26.
R.
Georges
,
M.
Freytes
,
D.
Hurtmans
,
I.
Kleiner
,
J.
Vander Auwera
, and
M.
Herman
,
Chem. Phys.
305
,
187
(
2004
).
27.
K. G.
Kidd
and
H. H.
Mantsch
,
J. Mol. Spectrosc.
85
,
375
(
1981
).
You do not currently have access to this content.