We report absolute differential cross sections (DCSs) for elastic electron scattering from GeF4. The incident electron energy range was 3–200 eV, while the scattered electron angular range was typically 15°–150°. In addition, corresponding independent atom model (IAM) calculations, within the screened additivity rule (SCAR) formulation, were also performed. Those results, particularly for electron energies above about 10 eV, were found to be in good quantitative agreement with the present experimental data. Furthermore, we compare our GeF4 elastic DCSs to similar data for scattering from CF4 and SiF4. All these three species possess Td symmetry, and at each specific energy considered above about 50 eV their DCSs are observed to be almost identical. These indistinguishable features suggest that high-energy elastic scattering from these targets is virtually dominated by the atomic-F species of the molecules. Finally, estimates for the measured GeF4 elastic integral cross sections are derived and compared to our IAM-SCAR computations and with independent total cross section values.

1.
P.
Możejko
,
B.
Żywicka-Możejko
, and
C.
Szmytkowski
,
Nucl. Instrum. Methods B
196
,
245
(
2002
).
2.
P. W.
Harland
,
S.
Cradock
, and
J. C.J.
Thynne
,
Int. J. Mass Spectrom. Ion Phys.
10
,
169
(
1972
).
3.
K. J.
Boyle
,
D. P.
Seccombe
,
R. P.
Tuckett
,
H.
Baumgärtel
, and
H. W.
Jochims
,
Chem. Phys. Lett
294
,
507
(
1998
).
4.
K.
Kuroki
,
D.
Spence
, and
M. A.
Dillon
,
J. Electron Spectrosc. Relat. Phenom.
70
,
151
(
1994
).
5.
S. M.
Mason
and
R. P.
Tuckett
,
Mol. Phys.
62
,
979
(
1987
).
6.
C.
Szmytkowski
,
P.
Możejko
, and
G.
Kasperski
,
J. Phys. B
31
,
3917
(
1998
).
7.
F. L.
Arnot
,
Proc. R. Soc. London A
144
,
360
(
1934
).
8.
S.
Hill
and
A. H.
Woodcock
,
Proc. R. Soc. London A
155
,
331
(
1936
).
9.
L.
Boesten
and
H.
Tanaka
,
J. Phys. B
24
,
821
(
1991
).
10.
L.
Boesten
,
H.
Tanaka
,
M.
Kubo
,
H.
Sato
,
M.
Kimura
,
M. A.
Dillon
, and
D.
Spence
,
J. Phys. B
23
,
1905
(
1990
).
11.
L.
Boesten
,
M. A.
Dillon
,
H.
Tanaka
,
M.
Kimura
, and
H.
Sato
,
J. Phys. B
27
,
1845
(
1994
).
12.
M. J.
Brunger
and
S. J.
Buckman
,
Phys. Rep.
357
,
215
(
2002
).
13.
H.
Kato
,
T.
Asahina
,
H.
Masui
,
M.
Hoshino
,
H.
Tanaka
,
H.
Cho
,
O.
Ingólfsson
,
F.
Blanco
,
G.
Garcia
,
S. J.
Buckman
, and
M. J.
Brunger
,
J. Chem. Phys.
132
,
074309
(
2010
).
14.
M. A.
Dillon
,
L.
Boesten
,
H.
Tanaka
,
M.
Kimura
, and
H.
Sato
,
J. Phys. B
26
,
3147
(
1993
).
15.
P.
Limão-Vieira
,
M.
Horie
,
H.
Kato
,
M.
Hoshino
,
F.
Blanco
,
G.
Garcia
,
S. J.
Buckman
, and
H.
Tanaka
,
J. Chem. Phys.
135
,
234309
(
2011
).
16.
M.
Fuss
,
A.
Muñoz
,
J. C.
Oller
,
F.
Blanco
,
D.
Almeida
,
P.
Limão-Vieira
,
T. P. D.
Do
,
M. J.
Brunger
, and
G.
García
,
Phys. Rev. A
80
,
052709
(
2009
).
17.
L.
Boesten
,
H.
Tanaka
,
A.
Kobayashi
,
M. A.
Dillon
, and
M.
Kimura
,
J. Phys. B
25
,
1607
(
1992
).
18.
H.
Kato
,
K.
Anzai
,
T.
Isihara
,
M.
Hoshino
,
F.
Blanco
,
G.
Garcia
,
P.
Limão-Vieira
,
M. J.
Brunger
, and
H.
Tanaka
, “
A study of electron interactions with silicon tetrafluoride: elastic scattering and vibrational excitation cross sections
,”
J. Phys. B
(in press).
19.
W.
Sun
,
M. A.
Morrison
,
W. A.
Isaacs
,
W. K.
Trail
,
D. T.
Alle
,
R. J.
Gulley
,
M. J.
Brennan
, and
S. J.
Buckman
,
Phys. Rev. A
52
,
1229
(
1995
).
20.
J. C.
Nickel
,
P. W.
Zetner
,
G.
Shen
, and
S.
Trajmar
,
J. Phys. E
22
,
730
(
1989
).
21.
L.
Boesten
and
H.
Tanaka
,
At. Data Nucl. Data Tables
52
,
25
(
1992
).
22.
M. A.
Khakoo
and
S.
Trajmar
,
Phys. Rev. A
34
,
138
(
1986
).
23.
D. T.
Alle
,
R. J.
Gulley
,
S. J.
Buckman
, and
M. J.
Brunger
,
J. Phys. B
25
,
1533
(
1992
).
24.
L.
Campbell
,
M. J.
Brunger
,
A. M.
Nolan
,
L. J.
Kelly
,
A. B.
Wedding
,
J.
Harrison
,
P. J. O.
Teubner
,
D. C.
Cartwright
, and
B.
McLaughlin
,
J. Phys. B
34
,
1185
(
2001
).
25.
D. G.
Thompson
,
Proc. R. Soc. London, Ser. A
294
,
160
(
1966
).
26.
G. G.
Raju
,
IEEE Trans. Dielectr. Electr. Insul.
16
,
1199
(
2009
).
27.
R. D.
Cowan
,
The Theory of Atomic Structure and Spectra
(
University of California Press
,
London
,
1981
).
28.
M. E.
Riley
and
D. G.
Truhlar
,
J. Chem. Phys.
63
,
2182
(
1975
).
29.
X. Z.
Zhang
,
J. F.
Sun
, and
Y. F.
Liu
,
J. Phys. B
25
,
1893
(
1992
).
30.
G.
Staszewska
,
D. W.
Schwenke
,
D.
Thirumalai
, and
D. G.
Truhlar
,
Phys. Rev. A
28
,
2740
(
1983
).
31.
F.
Blanco
and
G.
García
,
Phys. Lett. A
295
,
178
(
2002
).
32.
F.
Blanco
and
G.
García
,
Phys. Rev. A
67
,
022701
(
2003
).
33.
O.
Zatsarinny
,
K.
Bartschat
,
G.
Garcia
,
F.
Blanco
,
L. R.
Hargreaves
,
D. B.
Jones
,
R.
Murrie
,
J. R.
Brunton
,
M. J.
Brunger
,
M.
Hoshino
, and
S. J.
Buckman
,
Phys. Rev. A
83
,
042702
(
2011
).
34.
J. B.
Maljković
,
A. R.
Milosavljević
,
F.
Blanco
,
D.
Šević
,
G.
García
, and
B. P.
Marinković
,
Phys. Rev. A
79
,
052706
(
2009
).
35.
F.
Blanco
and
G.
Garcia
,
Phys. Lett. A
330
,
230
(
2004
).
36.
F.
Blanco
and
G.
García
,
J. Phys. B
42
,
145203
(
2009
).
37.
T.
Sakae
,
S.
Sumiyoshi
,
E.
Murakami
,
Y.
Matsumoto
,
K.
Ishibashi
, and
A.
Katase
,
J. Phys. B
22
,
1385
(
1989
).
38.
See http://www.wiredchemist.com/chemistry/data/bond-energies-lengths for tabulated values of the relevant bond lengths of the species in question.
You do not currently have access to this content.