This paper is the first of a two-part series dealing with quantum-mechanical (density-functional-based) studies of helium-mediated deposition of catalytic species on the rutile TiO2(110)-(1×1) surface. The interaction of helium with the TiO2(110)-(1×1) surface is first evaluated using the Perdew-Burke-Ernzerhof functional at a numerical grid dense enough to build an analytical three-dimensional potential energy surface. Three (two prototype) potential models for the He-surface interaction in helium scattering calculations are analyzed to build the analytical potential energy surface: (1) the hard-corrugated-wall potential model; (2) the corrugated-Morse potential model; and (3) the three-dimensional Morse potential model. Different model potentials are then used to study the dynamics upon collision of a 4He300 cluster with the TiO2(110) surface at zero temperature within the framework of a time-dependent density-functional approach for the quantum fluid [D. Mateo, D. Jin, M. Barranco, and M. Pi, J. Chem. Phys.134, 044507 (2011)] and classical dynamics calculations. The laterally averaged density functional theory-based potential with an added long-range dispersion interaction term is further applied. At variance with classical dynamics calculations, showing helium droplet splashing out of the surface at impact, the time evolution of the macroscopic helium wave-function predicts that the helium droplet spreads on the rutile surface and leads to the formation of a thin film above the substrate. This work thus provides a basis for simulating helium mediated deposition of metallic clusters embedded within helium nanodroplets.

1.
L.
Giagomazzi
,
F.
Toigo
, and
F.
Ancilotto
,
Phys. Rev. B
67
,
104501
(
2003
).
2.
M.
Bosinsegni
,
Phys. Rev. B
70
,
193411
(
2004
).
3.
J.
Turnbull
and
M.
Bosinsegni
,
Phys. Rev. B
76
,
104524
(
2007
).
4.
F.
Ancilotto
,
M.
Barranco
,
E. S.
Hernández
, and
M.
Pi
,
J. Low Temp. Phys.
157
,
174
(
2009
).
5.
J. P.
Toennies
and
A. F.
Vilesov
,
Angew. Chem., Int. Ed.
43
,
2622
(
2004
).
6.
V.
Mozhayskiy
,
M. N.
Slipchenko
,
V. K.
Adamchuk
, and
A. F.
Vilesov
,
J. Chem. Phys.
127
,
094701
(
2007
).
7.
E.
Loginov
,
L. F.
Gómez
, and
A. F.
Vilesov
,
J. Phys. Chem. A
115
,
7199
(
2011
).
8.
G. E.
Johnson
,
Q.
Hu
, and
J.
Laskin
,
Annu. Rev. Anal. Chem.
4
,
83
(
2011
).
9.
V.
Franchetti
,
B. H.
Solka
,
W. E.
Baitinger
,
J. W.
Amy
, and
R. G.
Cooks
,
Int. J. Mass Spectrom. Ion Phys.
23
,
29
(
1977
).
10.
S. A.
Miller
,
H.
Luo
,
S. J.
Pachuta
, and
R. G.
Cooks
,
Science
275
,
1447
(
1997
).
11.
T. A.
Blake
,
Z.
Ouyang
,
J. M.
Wiseman
,
Z.
Takáts
,
A. J.
Guymon
,
S.
Kothari
, and
R. G.
Cooks
,
Anal. Chem.
76
,
6293
(
2004
).
12.
X.
Tong
,
L.
Benz
,
P.
Kemper
,
H.
Metiu
,
M. T.
Bowers
, and
S. K.
Buratto
,
J. Am. Chem. Soc.
127
,
13516
(
2005
).
13.
L.
Benz
,
X.
Tong
,
P.
Kemper
,
Y.
Lilach
,
A.
Kolmakov
,
H.
Metiu
,
M. T.
Bowers
, and
S. K.
Buratto
,
J. Chem. Phys.
122
,
081102
(
2005
).
14.
W. E.
Kaden
,
T.
Wu
,
W. A.
Kunkel
, and
S. L.
Anderson
,
Science
326
,
826
(
2009
).
15.
S. N.
Rashkeev
,
S.
Dai
, and
S. H.
Overbury
,
J. Phys. Chem. C
114
,
2996
(
2010
).
16.
X.
Tong
,
L.
Benz
,
P.
Kemper
,
H.
Metiu
,
M. T.
Bowers
, and
S. K.
Buratto
,
J. Am. Chem. Soc.
127
,
13516
(
2005
).
17.
W.
Harbich
, in
Metal Clusters at Surfaces, Clusters Physics
, edited by
K. H.
Meiwe-Broer
(
Springer
,
Berlin
,
2000
).
18.
M.
Moseler
,
H.
Häkkinen
, and
U.
Landman
,
Phys. Rev. Lett.
89
,
176103
(
2002
).
19.
A.
Hernando
,
M.
Barranco
,
M.
Pi
,
E.
Loginov
,
M.
Langlet
, and
M.
Drabbels
,
Phys. Chem. Chem. Phys.
14
,
3996
(
2012
).
20.
D.
Mateo
,
D.
Jin
,
M.
Barranco
, and
M.
Pi
,
J. Chem. Phys.
134
,
044507
(
2011
).
21.
22.
T. L.
Thomson
and
J. T.
Yates
 Jr.
,
Chem. Rev.
106
,
4428
(
2006
).
23.
M.
Grätzel
,
Nature (London)
414
,
338
(
2001
).
25.
A. S.
Mazheika
,
T.
Bredow
,
V. E.
Matulis
, and
O. A.
Ivashkevich
,
J. Phys. Chem. C
115
,
17368
(
2011
).
26.
A. J. C.
Varandas
,
J. Phys. Chem. A
114
,
8505
(
2010
).
27.
M. P.
de Lara-Castells
,
N. F.
Aguirre
, and
A. O.
Mitrushchenkov
, “
Physisorption of helium on a TiO2(110) surface: Periodic and finite cluster approaches
,”
Chem. Phys.
(in press).
28.
M. P.
de Lara-Castells
and
A. O.
Mitrushchenkov
,
J. Phys. Chem. C
115
,
17540
(
2011
).
29.
U.
Birkenheuer
,
P.
Fulde
, and
H.
Stoll
,
Theor. Chem. Acc.
116
,
398
(
2006
).
30.
C.
Pisani
,
M.
Busso
,
G.
Capecchi
,
S.
Casassa
,
R.
Dovesi
,
L.
Maschio
,
C.
Zicovich-Wilson
, and
M.
Schütz
,
J. Chem. Phys.
122
,
094113
(
2005
).
31.
R.
Martínez-Casado
,
G.
Mallia
,
D.
Usvyat
,
L.
Maschio
,
S.
Casassa
,
M.
Schütz
, and
N. M.
Harrison
,
J. Chem. Phys.
134
,
014706
(
2011
).
32.
S.
Grimme
,
Comput. Mol. Sci.
1
,
211
(
2011
).
33.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Chem. Rev.
112
,
289
(
2012
).
34.
A.
Michaelides
,
Appl. Phys. A
85
,
415
(
2006
).
35.
J.
Carrasco
,
B.
Santra
,
K.
Kilmeš
, and
A.
Michaelides
,
Phys. Rev. Lett.
106
,
026101
(
2011
).
36.
K.
Tonigold
and
A.
Groß
,
J. Comput. Chem.
33
,
695
(
2012
).
37.
F. F.
Wang
,
G.
Jenness
,
A. A.
Al-Saidi
, and
K. D.
Jordan
,
J. Chem. Phys.
132
,
134303
(
2010
).
38.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
92
,
246401
(
2004
).
39.
R.
Martínez-Casado
,
B.
Meyer
,
S.
Miret-Artés
,
F.
Traeger
, and
C.
Wöll
,
J. Phys. Condens. Matter
19
,
305006
(
2007
).
40.
A.
Chizmeshya
,
M. W.
Cole
, and
E.
Zaremba
,
J. Low Temp. Phys.
110
,
677
(
1998
).
41.
See supplementary material at http://dx.doi.org/10.1063/1.3698173 for numerical details, additional figures and movies of the dynamical evolution of the helium droplet.
42.
R.
Dovesi
,
V. R.
Saunderds
,
C.
Roetti
,
R.
Orlando
,
C. M.
Zicovich-Wilson
,
F.
Pascale
,
B.
Civalleri
,
K.
Doll
,
N. M.
Harrison
,
I. J.
Bush
,
P.
D'Arco
, and
M.
Llunell
,
CRYSTAL09 User's Manual
(
University of Torino
,
Torino
,
2006
).
43.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
44.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
45.
G.
Cabailh
,
X.
Torrelles
,
R.
Lindsay
,
O.
Bikondoa
,
I.
Journard
,
J.
Zegenhagen
, and
G.
Thornton
,
Phys. Rev. B
75
,
241403
(
2007
).
46.
W.
Busayaporn
,
X.
Torrelles
,
A.
Wander
,
S.
Tomić
,
A.
Ernst
,
B.
Montanari
,
N. M.
Harrison
,
O.
Bikondoa
,
I.
Jourmard
,
J.
Zegenhagen
,
G.
Cabailh
,
G.
Thorston
, and
R.
Lindsay
,
Phys. Rev. B
81
,
153404
(
2010
).
47.
M. C.
Righi
and
M.
Ferrario
,
J. Phys.: Condens. Matter
19
,
305008
(
2007
).
48.
A.
Schüller
,
D.
Blauth
,
J.
Seifert
,
M.
Busch
,
H.
Winter
,
K.
Gärtner
,
R.
Wlodarczyk
,
J.
Sauer
, and
M.
Sierka
,
Surf. Sci.
606
,
161
173
(
2012
).
49.
U.
Garibaldi
,
A. C.
Levi
,
R.
Spadacini
, and
G. E.
Tommei
,
Surf. Sci.
48
,
649
(
1975
).
50.
R.
Rousseau
,
H.
Khemliche
,
A. G.
Borisov
, and
P.
Roncin
,
Phys. Rev. Lett.
98
,
016104
(
2007
).
51.
E.
Esbjerg
and
J. K.
Nørskov
,
Phys. Rev. Lett.
45
,
807
(
1980
).
52.
G.
Benedek
,
G.
Brusdeylings
,
V.
Senz
,
J. G.
Skofronick
,
J. P.
Toennies
,
F.
Traeger
, and
R.
Vollmer
,
Phys. Rev. B
64
,
125421
(
2001
).
53.
D.
Farias
and
K. H.
Rieder
,
Rep. Prog. Phys.
61
,
1575
(
1998
).
54.
H.
Onishi
and
Y.
Iwasawa
,
Surf. Sci.
313
,
L783
(
1994
).
55.
U.
Diebold
,
J. F.
Anderson
,
K.
Ng
, and
D.
Vanderbilt
,
Phys. Rev. Lett.
77
,
1322
(
1996
).
56.
G.
Armand
and
J. R.
Manson
,
Surf. Sci.
119
,
L299
(
1982
).
57.
G.
Wolken
 Jr.
,
J. Chem. Phys.
58
,
3047
(
1972
).
58.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
59.
Y.
Zhang
and
W.
Yang
,
Phys. Rev. Lett.
80
,
890
(
1998
).
60.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
61.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
62.
J.
Kilmeš
,
D. R.
Bowler
, and
A.
Michaelides
,
Phys. Rev. B
83
,
195131
(
2011
).
63.
K.
Lee
,
E.
Eamonn
,
L.
Kong
,
B. I.
Lundqvist
, and
D. C.
Langreth
,
Phys. Rev. B
82
,
081101
R
(
2010
).
64.
W.
Hujo
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
13
,
13942
(
2011
).
65.
K.
Pernal
,
R.
Podeszwa
,
K.
Patkowski
, and
K.
Szalewicz
,
Phys. Rev. Lett.
103
,
263201
(
2009
).
66.
B.
Johnson
and
R. J.
Hinde
,
J. Phys. Chem. A
115
,
7112
(
2011
).
67.
P.
Fowler
and
J. M.
Hustson
,
Surf. Sci. Lett.
165
,
289
(
1986
).
68.
V.
Dimitrov
and
S.
Sakka
,
J. Appl. Phys.
79
,
1736
(
1996
).
69.
G.
Benedek
,
G.
Brusdeylins
,
V.
Senz
,
J. G.
Skofronick
,
J. P.
Toennies
,
F.
Traeger
, and
R.
Vollmer
,
Phys. Rev. B
64
,
125421
(
2001
).
70.
F.
Dalfovo
,
A.
Lastri
,
L.
Pricaupenko
,
S.
Stringari
, and
J.
Treiner
,
Phys. Rev. B
52
,
1193
(
1995
).
71.
D.
Mateo
,
M.
Pi
, and
M.
Barranco
,
Phys. Rev. B
81
,
174510
(
2010
).
72.
A.
Ralston
and
H. S.
Wilf
,
Mathematical Methods for Digital Computers
(
Wiley
,
New York
,
1960
).
73.
M.
Frigo
and
S. G.
Johnson
,
Proc. IEEE
93
,
216
(
2005
).
74.
M.
Pi
,
R.
Mayol
,
A.
Hernando
,
M.
Barranco
, and
F.
Ancilotto
,
J. Chem. Phys.
126
,
244502
(
2007
).
75.
F.
Ancilotto
,
M.
Barranco
,
F.
Caupin
,
R.
Mayol
, and
M.
Pi
,
Phys. Rev. B
72
,
214522
(
2005
).
76.
R. A.
Aziz
and
M. J.
Slaman
,
J. Chem. Phys.
94
,
8047
(
1991
).
78.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).

Supplementary Material

You do not currently have access to this content.