We extend the spin-adapted density matrix renormalization group (DMRG) algorithm of McCulloch and Gulacsi [Europhys. Lett.57, 852 (2002)] https://doi.org/10.1209/epl/i2002-00393-0 to quantum chemical Hamiltonians. This involves using a quasi-density matrix, to ensure that the renormalized DMRG states are eigenfunctions of |$\hat{S}^2$|Ŝ2, and the Wigner-Eckart theorem, to reduce overall storage and computational costs. We argue that the spin-adapted DMRG algorithm is most advantageous for low spin states. Consequently, we also implement a singlet-embedding strategy due to Tatsuaki [Phys. Rev. E61, 3199 (2000)] https://doi.org/10.1103/PhysRevE.61.3199 where we target high spin states as a component of a larger fictitious singlet system. Finally, we present an efficient algorithm to calculate one- and two-body reduced density matrices from the spin-adapted wavefunctions. We evaluate our developments with benchmark calculations on transition metal system active space models. These include the Fe2S2, [Fe2S2(SCH3)4]2−, and Cr2 systems. In the case of Fe2S2, the spin-ladder spacing is on the microHartree scale, and here we show that we can target such very closely spaced states. In [Fe2S2(SCH3)4]2−, we calculate particle and spin correlation functions, to examine the role of sulfur bridging orbitals in the electronic structure. In Cr2 we demonstrate that spin-adaptation with the Wigner-Eckart theorem and using singlet embedding can yield up to an order of magnitude increase in computational efficiency. Overall, these calculations demonstrate the potential of using spin-adaptation to extend the range of DMRG calculations in complex transition metal problems.

1.
I. P.
McCulloch
and
M.
Gulacsi
,
Europhys. Lett.
57
,
852
(
2002
).
2.
W.
Tatsuaki
,
Phys. Rev. E
61
,
3199
(
2000
), see top of p. 3202.
3.
4.
S. R.
White
,
Phys. Rev. B
48
,
10345
(
1993
).
5.
S. R.
White
and
R. L.
Martin
,
J. Chem. Phys.
110
,
4127
(
1999
).
6.
A. O.
Mitrushenkov
,
G.
Fano
,
F.
Ortolani
,
R.
Linguerri
, and
P.
Palmieri
,
J. Chem. Phys.
115
,
6815
(
2001
).
7.
G. K. L.
Chan
and
M.
Head-Gordon
,
J. Chem. Phys.
116
,
4462
(
2002
).
8.
K. H.
Marti
,
I. M.
Ondík
,
G.
Moritz
, and
M.
Reiher
,
J. Chem. Phys.
128
,
014104
(
2008
).
9.
Ö.
Legeza
,
J.
Röder
, and
B. A.
Hess
,
Phys. Rev. B
67
,
125114
(
2003
).
10.
D.
Zgid
and
M.
Nooijen
,
J. Chem. Phys.
128
,
014107
(
2008
).
11.
Y.
Kurashige
and
T.
Yanai
,
J. Chem. Phys.
130
,
234114
(
2009
).
12.
S.
Daul
,
I.
Ciofini
,
C.
Daul
, and
S. R.
White
,
Int. J. Quantum Chem.
79
,
331
(
2000
).
13.
A. O.
Mitrushenkov
,
R.
Linguerri
,
P.
Palmieri
, and
G.
Fano
,
J. Chem. Phys.
119
,
4148
(
2003
).
14.
Ö.
Legeza
,
J.
Röder
, and
B. A.
Hess
,
Mol. Phys.
101
,
2019
(
2003
).
15.
J.
Rissler
,
R. M.
Noack
, and
S. R.
White
,
Chem. Phys.
323
,
519
(
2006
).
16.
Ö.
Legeza
and
J.
Sólyom
,
Phys. Rev. B
68
,
195116
(
2003
).
17.
T.
Yanai
,
Y.
Kurashige
,
E.
Neuscamman
, and
G. K.-L.
Chan
,
J. Phys. Chem.
132
,
24105
(
2010
).
18.
G.
Moritz
,
B. A.
Hess
, and
M.
Reiher
,
J. Chem. Phys.
122
,
024107
(
2005
).
19.
G.
Moritz
and
M.
Reiher
,
J. Chem. Phys.
124
,
034103
(
2006
).
20.
G.
Moritz
,
A.
Wolf
, and
M.
Reiher
,
J. Chem. Phys.
123
,
184105
(
2005
).
21.
G.
Moritz
and
M.
Reiher
,
J. Chem. Phys.
126
,
244109
(
2007
).
22.
W.
Duch
and
J.
Karwowski
,
Int. J. Quantum Chem.
22
,
783
(
1982
).
23.
K.
Ruedenberg
,
Phys. Rev. Lett.
27
,
1105
(
1971
).
24.
J.
Paldus
and
P. E. S.
Wormer
,
Int. J. Quantum Chem.
16
,
1321
(
1979
).
25.
I.
Shavitt
,
Int. J. Quantum Chem.
14
,
5
(
1978
).
26.
B. R.
Brooks
and
H. F. I.
Schaefer
,
J. Chem. Phys.
70
,
5092
(
1979
).
27.
G.
Sierra
and
T.
Nishino
,
Nucl. Phys. B
495
,
505
(
1997
).
28.
I. P.
McCulloch
and
M.
Gulacsi
,
Aust. J. Phys.
53
,
597
(
2000
).
29.
I. P.
McCulloch
and
M.
Gulacsi
,
Philos. Mag. Lett.
81
,
447
(
2001
).
30.
E.
Neuscamman
,
T.
Yanai
, and
G. K.-L.
Chan
,
Int. Rev. Phys. Chem.
29
,
231
(
2010
).
31.
Y.
Kurashige
and
T.
Yanai
,
J. Chem. Phys.
135
,
094104
(
2011
).
32.
U.
Schollwöck
,
Rev. Mod. Phys.
77
,
259
(
2005
).
33.
G. K.-L.
Chan
and
S.
Sharma
,
Annu. Rev. Phys. Chem.
62
,
465
(
2011
).
34.
A. R.
Edmonds
,
Angular Momentum in Quantum Mechanics
, 3rd ed. (
Oxford University Press
,
New York
,
1994
).
35.
D. M.
Brink
and
G. R.
Satchler
,
Angular Momentum
, 2nd ed. (
Princeton University Press
,
Princeton, NJ
,
1974
).
36.
37.
G. K. L.
Chan
,
J. Chem. Phys.
120
,
3172
(
2004
).
38.
H.-J.
Werner
and
E. A.
Reinsch
,
J. Chem. Phys.
76
,
3144
(
1982
).
39.
B. O.
Roos
,
P.
Linse
,
P. E.
Siegbahn
, and
M. R.
Blomberg
,
Chem. Phys.
66
,
197
(
1982
).
40.
B. O.
Roos
,
Collect. Czech. Chem. Commun.
68
,
265
(
2003
).
41.
D.
Ghosh
,
J.
Hachmann
,
T.
Yanai
, and
G. K. L.
Chan
,
J. Chem. Phys.
128
,
144117
(
2008
).
42.
D.
Zgid
and
M.
Nooijen
,
J. Chem. Phys.
128
,
144115
(
2008
).
43.
L.
Banci
,
I.
Bertini
,
G.
Gori Savellini
, and
C.
Luchinat
,
Inorg. Chem.
35
,
4248
(
1996
).
44.
O.
Hubner
and
J.
Sauer
,
Phys. Chem. Chem. Phys.
4
,
5234
(
2002
).
45.
P.
Celani
,
H.
Stoll
,
H.-J.
Werner
, and
P.
Knowles
,
Mol. Phys.
102
,
2369
(
2004
).
46.
K.
Andersson
,
B. O.
Roos
,
P. A.
Malmqvist
, and
P. O.
Widmark
,
Chem. Phys. Lett.
230
,
391
(
1994
).
47.
A. O.
Mitrushenkov
and
P.
Palmieri
,
Chem. Phys. Lett.
278
,
285
(
1997
).
48.
W. J.
Hehre
,
R. F.
Stewart
, and
J. A.
Pople
,
J. Chem. Phys.
51
,
2657
(
1969
).
49.
A.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
50.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
51.
J. M.
Bofill
and
P.
Pulay
,
J. Chem. Phys.
90
,
3637
(
1989
).
52.
F.
Neese
, ORCA, version 2.8.0, an ab initio, dft and semiempirical scf-mo package.
53.
J. J.
Mayerle
,
S. E.
Denmark
,
B. V.
DePamphilis
,
J. A.
Ibers
, and
R. H.
Holm
,
J. Am. Chem. Soc.
97
,
1032
(
1975
).
54.
A.
Schafer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
55.
Y.
Kurashige
and
Y.
Takeshi
,
J. Chem. Phys.
135
,
094104
(
2011
).
56.
S.
Östlund
and
S.
Rommer
,
Phys. Rev. Lett.
75
,
3537
(
1995
).
57.
58.
See supplementary material at http://dx.doi.org/10.1063/1.3695642 for the geometries of the two iron sulphur molecules.

Supplementary Material

You do not currently have access to this content.