In an attempt to extend the applicability of the W1 and W2 ab initio computational thermochemistry methods, we propose explicitly correlated versions thereof, denoted W1-F12 and W2-F12. In W2-F12, we can “save” one cardinal number (viz., angular momentum) in the basis set sequences without loss in accuracy; in W1-F12, we can do so for first-row compounds but not for second-row compounds. At a root mean square deviation (RMSD) = 0.19 kcal/mol for the first-row molecules in the W4-11 benchmark dataset, W1-F12 is in fact superior to ordinary W1 theory. For the entire W4-11 set, W2-F12 yields a RMSD = 0.20 kcal/mol, comparable to 0.19 kcal/mol from ordinary W2 theory. The extended applicability ranges of W1-F12 and W2-F12 are not just due to the lower computational cost but also to greatly reduced memory and especially storage requirements. They are illustrated through applications to nucleic acids and to polyacenes (with up to four rings), for which the following revised gas-phase heats of formation are found:

$\Delta _fH^\circ _{298}$
ΔfH298 = 19.6 (benzene), 34.94 (naphthalene), 53.9, (anthracene), 73.9 (naphthacene/tetracene), 54.9 (adenine), −16.3 (cytosine), 5.1 (guanine), −80.6 (thymine), and −71.6 (uracil) kcal/mol. Our theoretical values for the DNA/RNA bases largely confirm recent predictions based on much lower-level calculations. The W1-F12 theoretical values for benzene, naphthalene, and anthracene are in very good to reasonable agreement with experiment. However, both W1-F12 and other computational estimates show that the accepted experimental value for naphthacene cannot be reconciled with those for the lower acenes: we suggest that
$\Delta _f H^\circ _{298}$
ΔfH298
[naphthacene(g)] = 74.25 ± 1 kcal/mol is a more realistic estimate.

1.
L.
Goerigk
and
S.
Grimme
,
J. Chem. Theory Comput.
7
,
291
(
2011
).
2.
J. M. L.
Martin
and
G.
de Oliveira
,
J. Chem. Phys.
111
,
1843
(
1999
).
3.
S.
Parthiban
and
J. M. L.
Martin
,
J. Chem. Phys.
114
,
6014
(
2001
).
4.
N. J.
DeYonker
,
T. R.
Cundari
, and
A. K.
Wilson
,
J. Chem. Phys.
124
,
114104
(
2006
).
5.
N. J.
DeYonker
,
T.
Grimes
,
S.
Yockel
,
A.
Dinescu
,
B.
Mintz
,
T. R.
Cundari
, and
A. K.
Wilson
,
J. Chem. Phys.
125
,
104111
(
2006
).
6.
K. A.
Peterson
,
D.
Feller
, and
D. A.
Dixon
,
Theor. Chem. Acc.
131
,
1079
(
2012
).
7.
T.
Helgaker
,
W.
Klopper
, and
D. P.
Tew
,
Mol. Phys.
106
,
2107
(
2008
).
8.
J. M. L.
Martin
and
S.
Parthiban
,
Computational Thermochemistry. Prediction and Estimation of Molecular Thermodynamics
,
Understanding Chemical Reactivity
Vol.
22
, edited by
J.
Cioslowski
(
Kluwer
,
Dordrecht
,
2001
), pp.
31
65
.
9.
D.
Feller
,
K. A.
Peterson
, and
J. G.
Hill
,
J. Chem. Phys.
135
,
044102
(
2011
).
10.
A.
Karton
,
E.
Rabinovich
,
J. M. L.
Martin
, and
B.
Ruscic
,
J. Chem. Phys.
125
,
144108
(
2006
).
11.
A.
Karton
,
P. R.
Taylor
, and
J. M. L.
Martin
,
J. Chem. Phys.
127
,
064104
(
2007
).
12.
W. D.
Allen
,
A. L. L.
East
, and
A. G.
Császár
,
Structures and Conformations of Non-Rigid Molecules
, edited by
J.
Laane
,
M.
Dakkouri
,
B.
van der Veken
, and
H.
Oberhammer
(
Kluwer
,
Dordrecht
,
1993
), p.
343
.
13.
A. G.
Császár
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
108
,
9751
(
1998
).
14.
A.
Tajti
,
P. G.
Szalay
,
A. G.
Császár
,
M.
Kalláy
,
J.
Gauss
,
E. F.
Valeev
,
B. A.
Flowers
,
J.
Vázquez
,
J. F.
Stanton
,
J. Chem. Phys.
121
,
11599
(
2004
).
15.
Y. J.
Bomble
,
J.
Vázquez
,
M.
Kállay
,
C.
Michauk
,
P. G.
Szalay
,
A. G.
Császár
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
125
,
064108
(
2006
).
16.
M. E.
Harding
,
J.
Vázquez
,
B.
Ruscic
,
A. K.
Wilson
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
128
,
114111
(
2008
).
17.
B.
Ruscic
,
R. E.
Pinzon
,
M. L.
Morton
,
G.
von Laszewski
,
S.
Bittner
,
S. G.
Nijsure
,
K. A.
Amin
,
M.
Minkoff
, and
A. F.
Wagner
,
J. Phys. Chem. A
108
,
9979
(
2004
).
18.
B.
Ruscic
,
Encyclopedia of Science and Technology (2005 Yearbook of Science and Technology)
(
McGraw-Hill
,
New York
,
2004
), pp.
3
7
.
19.
B.
Ruscic
,
R. E.
Pinzon
,
M. L.
Morton
,
N. K.
Srinivasan
,
M.-C.
Su
,
J. W.
Sutherland
, and
J. V.
Michael
,
J. Phys. Chem. A
110
,
6592
(
2006
).
20.
A.
Karton
,
S.
Daon
, and
J. M. L.
Martin
,
Chem. Phys. Lett.
510
,
165
(
2011
).
21.
E. A.
Hylleraas
,
Z. Phys.
1929
,
54
(
347
);
For an english translation, see
H.
Hettema
,
Quantum Chemistry: Classic Scientific Papers
(
World Scientific
,
Singapore
,
2000
), Vol.
8
, p.
81
.
22.
W.
Klopper
and
W.
Kutzelnigg
,
Chem. Phys. Lett.
134
,
17
(
1987
).
23.
W.
Kutzelnigg
and
W.
Klopper
,
J. Chem. Phys.
94
,
1985
(
1991
).
24.
A. K.
Peterson
,
T. B.
Adler
, and
H.-J.
Werner
,
J. Chem. Phys.
128
,
084102
(
2008
).
25.
J. G.
Hill
,
K. A.
Peterson
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
131
,
194105
(
2009
).
26.
A.
Karton
,
I.
Kaminker
, and
J. M. L.
Martin
,
J. Phys. Chem. A
113
,
7610
(
2009
).
27.
W.
Klopper
,
R.
Bachorz
,
C.
Hättig
, and
D. P.
Tew
,
Theor. Chim. Acta
126
,
289
(
2010
).
28.
W.
Klopper
,
B.
Ruscic
,
D. P.
Tew
,
F. A.
Bischoff
, and
S.
Wolfsegger
,
Chem. Phys.
356
,
14
(
2009
).
29.
H.
Fliegl
,
W.
Klopper
, and
C.
Hättig
,
J. Chem. Phys.
122
,
084107
(
2005
).
30.
R.
Haunschild
and
W.
Klopper
,
Theor. Chem. Acc.
131
,
1112
(
2012
).
31.
A.
Mahler
and
A. K.
Wilson
(unpublished).
32.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al., PLBIBSC-MOLPRO, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net.
33.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN 09, Revision A.1,
Gaussian, Inc.
, Wallingford, CT,
2009
.
34.
F.
Weigend
,
Phys. Chem. Chem. Phys.
8
,
1057
(
2006
), and references therein.
35.
See supplementary material at http://dx.doi.org/10.1063/1.3697678 for the basis set convergence of the SCF, CCSD, and (T) components in standard and explicitly correlated calculations for all of the molecules in the W4-11 dataset are presented in Tables SI-I, SI-II, and SI-III, respectively. Basis set convergence of the CCSD and (T) components of the core-valence corrections for all of the molecules in the W4-11 dataset are presented in Table SI-IV and SI-V. The deviations from basis set limit reference values of the W1-F12, W2-F12, W1w, and W2w protocols for the molecules in the W4-11 dataset are given in Table SI-VI. B3LYP-D/Def2-TZVP optimized geometries of adenine, cytosine, guanine, thymine, uracil, benzene, naphthalene, anthracene, and naphthacene are also provided.
36.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
37.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
38.
T. H.
Dunning
,
K. A.
Peterson
, and
A. K.
Wilson
,
J. Chem. Phys.
114
,
9244
(
2001
).
39.
E. C.
Barnes
,
G. A.
Petersson
,
J. A.
Montgomery
,
M. J.
Frisch
, and
J. M. L.
Martin
,
J. Chem. Theory Comput.
5
,
2687
(
2009
).
40.
M.
Douglas
and
N. M.
Kroll
,
Ann. Phys.
82
,
89
(
1974
).
41.
42.
This work was inspired by the following pioneering paper on static Gaussian geminals:
B. J.
Persson
and
P. R.
Taylor
,
J. Chem. Phys.
105
,
5915
(
1996
);
S.
Ten-no
and
J.
Noga
,
WIREs Comput. Mol. Sci.
2
,
114
(
2012
).
43.
H.-J.
Werner
,
T. B.
Adler
, and
F. R.
Manby
,
J. Chem. Phys.
126
,
164102
(
2007
).
44.
G.
Knizia
and
H.-J.
Werner
,
J. Chem. Phys.
128
,
154103
(
2008
).
45.
T. B.
Adler
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
127
,
221106
(
2007
).
46.
G.
Knizia
,
T. B.
Adler
, and
H.-J.
Werner
,
J. Chem. Phys.
130
,
054104
(
2009
).
47.
J.
Noga
,
S.
Kedžuch
, and
J.
Šimunek
,
J. Chem. Phys.
127
,
034106
(
2007
).
48.
G. J.
Hill
,
S.
Mazumder
, and
K. A.
Peterson
,
J. Chem. Phys.
132
,
054108
(
2010
).
49.
K. E.
Yousaf
and
K. A.
Peterson
,
J. Chem. Phys.
129
,
184108
(
2008
).
50.
E. F.
Valeev
,
Chem. Phys. Lett.
395
,
190
(
2004
).
51.
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
,
4285
(
2002
).
52.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
);
C.
Hättig
,
Phys. Chem. Chem. Phys.
7
,
59
(
2005
).
53.
For a normal distribution without bias (systematic error), MAD/RMSD =
$\sqrt{2/\pi }=0.7979\ldots\approx 4/5,$
2/π=0.7979...4/5,
see
R. C.
Geary
,
Biometrika
27
,
310
(
1935
). As discussed in Ref. 20 and references therein, a few large outliers will cause a significant drop from that idealized ratio.
54.
W. A.
de Jong
,
R. J.
Harrison
, and
D. A.
Dixon
,
J. Chem. Phys.
114
,
48
(
2001
).
55.
The 13 highly multireference systems, for which the %TAEe[(T)] diagnostic is in excess of 10%, are: B2, C2(1Σ+), BN(1Σ+), OF, F2O, FOO, FOOF, Cl2O, ClOO, OClO, O3, S3, and S4, see Ref. 20 for further details.
56.
O. V.
Dorofeeva
and
N.
Vogt
,
J. Chem. Eng. Data
54
,
1348
(
2009
).
57.
For a review of G3, G3X, G4, and related empirical composite wavefunction methods, see
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
810
(
2011
).
58.
A. D.
Boese
,
M.
Oren
,
O.
Atasoylu
,
J. M. L.
Martin
,
M.
Kállay
, and
J.
Gauss
,
J. Chem. Phys.
120
,
4129
(
2004
).
59.
L. A.
Curtiss
,
P. C.
Redfern
, and
K.
Raghavachari
,
J. Chem. Phys.
126
,
084108
(
2007
);
[PubMed]
L. A.
Curtiss
,
P. C.
Redfern
, and
K.
Raghavachari
,
J. Chem. Phys.
127
,
124105
(
2007
);
[PubMed]
B.
Chan
,
J.
Deng
,
L.
Radom
,
J. Chem. Theory Comput.
7
,
112
(
2011
);
[PubMed]
J. A.
Montgomery
 Jr.
,
M. J.
Frisch
,
J. W.
Ochterski
,
G. A.
Petersson
,
J. Chem. Phys.
110
,
2822
(
1999
).
60.
J. B.
Pedley
,
Thermochemical Data and Structures of Organic Compounds
(
Thermodynamics Research Center
,
College Station, TX
,
1994
), Vol.
I
.
61.
M.
Victoria Roux
,
M.
Temprado
,
J. S.
Chickos
, and
Y.
Nagano
,
J. Phys. Chem. Ref. Data
37
,
1855
(
2008
);
See also
Y.
Nagano
,
J. Chem. Thermodyn.
34
,
377
(
2002
);
W.
Acree
and
J. S.
Chickos
,
J. Phys. Chem. Ref. Data
39
,
043101
(
2010
).
62.
M. W.
Chase
,
C. A.
Davies
,
J. R.
Downey
,
D. J.
Frurip
,
R. A.
McDonald
,
A. N.
Syverud
,
JANAF Thermochemical Tables
, 3rd ed. (
American Chemical Society and American Institute of Physics for the National Bureau of Standards
,
1985
),
M. W.
Chase
,
C. A.
Davies
,
J. R.
Downey
,
D. J.
Frurip
,
R. A.
McDonald
,
A. N.
Syverud
, [
J. Phys. Chem. Ref. Data
14
, (
Suppl. 1
) (
1985
)];
M. W.
Chase
,
NIST-JANAF Thermochemical Tables
, 4th ed. (
American Institute of Physics
,
1998
),
M. W.
Chase
, [
J. Phys. Chem. Ref. Data
1998
, Monograph No. 9]. Data are also accessible online via http://webbook.nist.gov/chemistry.
63.
S. W.
Slayden
and
J. F.
Liebman
,
Chem. Rev.
101
,
1541
(
2001
).
64.
A.
Tajti
,
P. G.
Szalay
, and
J.
Gauss
,
J. Chem. Phys.
127
,
014102
(
2007
).
65.
Based on early beta version 1.110 of the Core (Argonne) Thermochemical Network, see also http://atct.anl.gov/Thermochemical%20Data/version%20earlyBeta%201.110/index.html.
66.
J. D.
Cox
,
D. D.
Wagman
, and
V. A.
Medvedev
,
CODATA Key Values for Thermodynamics
(
Hemisphere Publishing Corp.
,
New York
,
1989
), see also http://www.codata.org/resources/databases/key1.html.

Supplementary Material

You do not currently have access to this content.