Signal proteins are able to adapt their response to a change in the environment, governing in this way a broad variety of important cellular processes in living systems. While conventional molecular-dynamics (MD) techniques can be used to explore the early signaling pathway of these protein systems at atomistic resolution, the high computational costs limit their usefulness for the elucidation of the multiscale transduction dynamics of most signaling processes, occurring on experimental timescales. To cope with the problem, we present in this paper a novel multiscale-modeling method, based on a combination of the kinetic Monte-Carlo- and MD-technique, and demonstrate its suitability for investigating the signaling behavior of the photoswitch light-oxygen-voltage-2-Jα domain from Avena Sativa (AsLOV2-Jα) and an AsLOV2-Jα-regulated photoactivable Rac1-GTPase (PA-Rac1), recently employed to control the motility of cancer cells through light stimulus. More specifically, we show that their signaling pathways begin with a residual re-arrangement and subsequent H-bond formation of amino acids near to the flavin-mononucleotide chromophore, causing a coupling between β-strands and subsequent detachment of a peripheral α-helix from the AsLOV2-domain. In the case of the PA-Rac1 system we find that this latter process induces the release of the AsLOV2-inhibitor from the switchII-activation site of the GTPase, enabling signal activation through effector-protein binding. These applications demonstrate that our approach reliably reproduces the signaling pathways of complex signal proteins, ranging from nanoseconds up to seconds at affordable computational costs.

1.
J. B.
Pereira-Leal
,
E. D.
Levy
, and
S. A.
Teichmann
,
Philos. Trans. R. Soc. London Ser. B
361
,
507
(
2006
).
2.
K.
Wennerberg
and
C. J.
Der
,
J. Cell Sci.
117
,
1301
(
2004
).
3.
A.
Singh
,
A. E.
Karnoub
,
T. R.
Palmby
,
E.
Lengyel
,
J.
Sondek
, and
C. J.
Der
,
Oncogene
23
,
9369
(
2004
).
6.
7.
T.
Kottke
,
P.
Hegemann
,
B.
Dick
, and
J.
Heberle
,
Biopolymers
82
,
373
(
2006
).
8.
M. A.
Jones
,
K. A.
Feeney
,
S. M.
Kelly
, and
J. M.
Christie
,
J. Biol. Chem.
282
,
6405
(
2007
).
9.
D.
Matsuoka
and
S.
Tokutomi
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
13337
(
2005
).
10.
A. S.
Halavaty
and
K.
Moffat
,
Biochemistry
46
,
14001
(
2007
).
11.
S. M.
Harper
,
L. C.
Neil
, and
K. H.
Gardner
,
Science
301
,
1541
(
2003
).
12.
S. M.
Harper
,
J. M.
Christie
, and
K. H.
Gardner
,
Biochemistry
43
,
16184
(
2004
).
13.
S.
Crosson
and
K.
Moffat
,
Plant Cell
14
,
1067
(
2002
).
14.
E.
Peter
,
B.
Dick
, and
S. A.
Baeurle
,
Nat. Commun.
1
,
122
(
2010
).
15.
Y. I.
Wu
,
D.
Frey
,
O. I.
Lungu
,
A.
Jaehrig
,
I.
Schlichting
,
B.
Kuhlman
, and
K. M.
Hahn
,
Nature (London)
461
,
104
(
2009
).
16.
E.
Peter
,
B.
Dick
, and
S. A.
Baeurle
,
Proteins: Struct., Funct., Bioinf.
(
2012
).
17.
M.
Karplus
and
J.
Kuriyan
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
6679
(
2005
), and references therein.
18.
S. A.
Baeurle
,
J. Math. Chem.
46
,
363
(
2009
).
19.
Y.
Nakasone
,
T.
Eitoku
,
D.
Matsuoka
,
S.
Tokutomi
, and
M.
Terazima
,
J. Mol. Biol.
367
,
432
(
2007
).
20.
W. R. P.
Scott
,
P. H.
Hunenberger
,
I. G.
Tironi
,
A. E.
Mark
,
S. R.
Billeter
,
J.
Fennen
,
A. E.
Torda
,
T.
Huber
,
P.
Kruger
, and
W. F.
van Gunsteren
,
J. Phys. Chem. A
103
,
3596
(
1999
).
21.
L.
Monticelli
,
S. K.
Kandasamy
,
X.
Periole
,
R. G.
Larson
,
D. P.
Tieleman
, and
S. J.
Marrink
,
J. Chem. Theory Comput.
4
,
819
(
2008
).
22.
A. J.
Rzepiela
,
L. V.
Schäfer
,
N.
Goga
,
H. J.
Risselada
,
A.
de Vries
, and
S. J.
Marrink
,
J. Comput. Chem.
31
,
1333
(
2010
).
23.
H. M.
Senn
and
W.
Thiel
,
Top Curr. Chem.
268
,
173
(
2007
).
24.
J.
Noolandi
,
T. S.
Davison
,
A. R.
Völkel
,
X.-F.
Nie
,
C.
Kay
, and
C. H.
Arrowsmith
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
9955
(
2000
).
25.
A. R.
Völkel
and
J.
Noolandi
,
Biophys. J.
80
,
1524
(
2001
).
26.
T.
Coussaert
,
A. R.
Völkel
,
J.
Noolandi
and
A. P.
Gast
,
Biophys. J.
80
,
2004
(
2001
).
27.
G. S.
Ayton
and
G. A.
Voth
,
Curr. Opin. Struct. Biol.
19
,
138
(
2009
), and references therein.
28.
M.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
,
J. Chem. Phys.
97
,
1990
(
1992
).
29.
C. R.
Sweet
,
P.
Petrone
,
V. S.
Pande
, and
J. A.
Izaguirre
,
J. Chem. Phys.
128
,
145101
(
2008
).
30.
J. A.
Izaguirre
,
C. R.
Sweet
, and
V. S.
Pande
,
Pac. Symp. Biocomput.
15
,
240
(
2010
).
31.
D. E.
Shaw
,
P.
Maragakis
,
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
,
M. P.
Eastwood
,
J. A.
Bank
,
J. M.
Jumper
,
J. K.
Salmon
,
Y.
Shan
, and
W.
Wriggers
,
Science
330
,
341
(
2010
).
32.
V. A.
Voelz
,
G. R.
Bowman
,
K.
Beauchamp
, and
V. S.
Pande
,
J. Am. Chem. Soc.
132
,
1526
(
2010
).
33.
M.
Shirts
and
V. S.
Pande
,
Science
290
,
1903
(
2000
).
34.
D. E.
Shaw
,
R. O.
Dror
,
J. K.
Salmon
,
J. P.
Grossman
,
K. M.
Mackenzie
,
J. A.
Bank
,
C.
Young
,
M. M.
Deneroff
,
B.
Batson
,
K. J.
Bowers
,
E.
Chow
,
M. P.
Eastwood
,
D. J.
Ierardi
,
J. L.
Klepeis
,
J. S.
Kuskin
,
R. H.
Larson
,
K.
Lindorff-Larsen
,
P.
Maragakis
,
M. A.
Moraes
,
S.
Piana
,
Y.
Shan
, and
B.
Towles
, in
Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (SC09)
(
ACM
,
New York
,
2009
), pp.
1
11
.
35.
J. A.
Izaguirre
and
S. S.
Hampton
,
J. Comput. Phys.
200
,
581
(
2004
).
36.
H.
Grubmueller
,
Phys. Rev. E
52
,
2893
(
1995
).
37.
A.
Barducci
,
R.
Chelli
,
P.
Procacci
,
V.
Schettino
,
F. L.
Gervasio
, and
M.
Parrinello
,
J. Am. Chem. Soc.
128
,
2705
(
2006
).
38.
A. B.
Bortz
,
M. H.
Kalos
, and
J. L.
Lebowitz
,
J. Comput. Phys.
17
,
10
(
1975
).
39.
D. E.
Makarov
and
H.
Metiu
,
J. Chem. Phys.
116
,
5205
(
2002
).
40.
D. E.
Makarov
,
C. A.
Keller
,
K. W.
Plaxco
, and
H.
Metiu
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
3535
(
2002
).
41.
42.
D. E.
Makarov
,
P. K.
Hansma
, and
H.
Metiu
,
J. Chem. Phys.
114
,
9663
(
2001
).
43.
P.-C.
Li
and
D. E.
Makarov
,
J. Chem. Phys.
119
,
9260
(
2003
).
44.
M.
Rief
,
M.
Gautel
,
F.
Oesterhelt
,
J. M.
Fernandez
, and
H. E.
Gaub
,
Science
276
,
1109
(
1997
).
45.
A. F.
Voter
, “
Introduction to the kinetic Monte Carlo method
,” in
Radiation Effects in Solids
, edited by
K. E.
Sickafus
,
E. A.
Kotomin
, and
B. P.
Uberuaga
(
Springer
,
Berlin
,
2007
), Vol.
235
, pp.
1
23
.
46.
J.
Howard
, “
Mechanics of motor proteins
,” in
Physics of Bio-Molecules and Cells, 75th Les Houches Summer School
, edited by
H.
Flyvbjerg
,
F.
Jülicher
,
P.
Ormos
, and
F.
David
(
Springer-Verlag
,
Berlin
,
2002
), Vol.
75
, pp.
69
94
.
47.
A. A.
Gurtovenko
and
Y. Y.
Gotlib
,
J. Chem. Phys.
115
,
6785
(
2001
).
48.
V. B. P.
Leite
,
J. N.
Onuchic
,
G.
Stell
, and
J.
Wang
,
Biophys. J.
87
,
3633
(
2004
).
49.
P. L.
Freddolino
,
M.
Dittrich
, and
K.
Schulten
,
Biophys. J.
91
,
3630
(
2006
).
50.
T.
Kottke
,
J.
Heberle
,
D.
Hehn
,
B.
Dick
, and
P.
Hegemann
,
Biophys. J.
84
,
1192
(
2003
).
51.
R.
Fedorov
,
I.
Schlichting
,
E.
Hartmann
,
T.
Domratcheva
,
M.
Fuhrmann
, and
P.
Hegemann
,
Biophys. J.
84
,
2474
(
2003
).
52.
E.
Peter
,
B.
Dick
, and
S. A.
Baeurle
, “
Signals of LOV1: a computer simulation study on the wildtype LOV1-domain of Chlamydomonas reinhardtii and its mutants
,”
J. Mol. Model.
(to be published).
53.
E.
Peter
,
B.
Dick
, and
S. A.
Baeurle
,
J. Chem. Biol.
4
,
167
(
2011
).
54.
E.
Peter
,
B.
Dick
, and
S. A.
Baeurle
,
Proteins: Struct., Funct., Bioinf.
80
,
471
(
2012
).
55.
K. J.
Laidler
and
M. C.
King
,
J. Phys. Chem.
87
,
2657
(
1983
).
56.
D. K.
Roylance
, “
Characterization of polymer deformation and fracture
,” in
Applications of Polymer Spectroscopy
,” edited by
E. G.
Brame
(
Academic
,
New York
,
1978
), pp.
207
219
.
57.
T.
Keii
,
Heterogeneous Kinetics: Theory of Ziegler-Natta-Kaminsky Polymerization
(
Springer Series in Chemical Physics
,
Berlin
,
2004
), pp.
59
60
.
58.
D. C.
Liu
and
J.
Nocedal
,
Math. Program
45
,
503
(
1989
).
59.
D.
Fincham
,
N.
Quirke
, and
D. J.
Tildesley
,
J. Chem. Phys.
84
,
4535
(
1986
).
60.
See supplementary material at http://dx.doi.org/10.1063/1.3697370 for the process pathes of the H-bond breakage, H-bond formation as well as side chain rotation events. In addition detailed information is provided about the determination of the pre-exponential factors for the KMC-MD simulations of the AsLOV2-Jα- and PA-Rac1-systems.
61.
A.
Luzar
and
D.
Chandler
,
J. Chem. Phys.
98
,
8160
(
1993
).
62.
B.
Hetenyi
,
F.
De Angelis
,
P.
Giannozzi
, and
R.
Car
,
J. Chem. Phys.
120
,
8632
(
2004
).
63.
I. W.
Kuo
and
C. J.
Mundy
,
Science
303
,
658
(
2004
).
64.
Y.
Zhang
,
M.
Lagi
,
D.
Liu
,
F.
Mallamace
,
E.
Fratini
,
P.
Baglioni
,
E.
Mamontov
,
M.
Hagen
, and
S.-H.
Chen
,
J. Chem. Phys.
130
,
135101
(
2009
).
65.
E.
Lindahl
,
B.
Hess
, and
D.
van der Spoel
,
J. Mol. Model.
7
,
306
(
2001
).
66.
T.
Soares
,
X.
Daura
,
C.
Oostenbrink
,
L.
Smith
, and
W.
Gunsteren
,
J. Biomol. NMR
30
,
407
(
2004
).
67.
N.
Todorova
,
F. S.
Legge
,
H.
Treutlein
, and
I.
Yarovsky
,
J. Phys. Chem.
112
,
11137
(
2008
).
68.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic
,
San Diego
,
2003
).
69.
C.
Neiss
and
P.
Saalfrank
,
Photochem. Photobiol.
77
,
101
(
2003
).
70.
A. I.
Nash
,
W.-H.
Ko
,
S. M.
Harper
, and
K. H.
Gardner
,
Biochemistry
47
,
13842
(
2008
).
71.
M. T. A.
Alexandre
,
R.
van Grondelle
,
K. J.
Hellingwerf
, and
J. T. M.
Kennis
,
Biophys. J.
97
,
238
(
2009
).
72.
S.
Arai
,
M.
Togashi
,
M.
Shiozawa
,
Y.
Inoue
, and
M.
Sakurai
,
Chem. Phys. Lett.
414
,
230
(
2005
).
73.
A.
Pfeifer
,
T.
Majerus
,
K.
Zikihara
,
D.
Matsuoka
,
S.
Tokutomi
,
J.
Heberle
, and
T.
Kottke
,
Biophys. J.
96
,
1462
(
2009
).
74.
C.
DerMadirossian
,
A.
Schnelzer
, and
G. M.
Bokoch
,
Mol. Cell
15
,
117
(
2004
).
75.
D.
Owen
,
L. J.
Campbell
,
K.
Littlefield
,
K. A.
Evetts
,
Z.
Li
,
D. B.
Sacks
,
P. N.
Lowe
, and
H. R.
Mott
,
J. Biol. Chem.
283
,
1692
(
2008
).
76.
J.
Yamauchi
,
Y.
Miyamoto
,
A.
Sanbe
, and
A.
Tanoue
,
Exp. Cell Res.
312
,
2954
(
2006
).
78.
A.
Deiters
,
Curr. Opin. Chem. Biol.
13
,
678
(
2009
).

Supplementary Material

You do not currently have access to this content.