The electron-hole explicitly correlated Hartree-Fock method (eh-XCHF) is presented as a general strategy for investigation of electron-hole correlation and computation of electron-hole recombination probability. The eh-XCHF method is a variational method which uses explicitly correlated wavefunction that depends on the electron-hole inter-particle distances. It is shown that the explicitly correlated ansatz provides a systematic route to variationally minimize the total energy. The parabolic quantum dot is used as the benchmark system and the eh-XCHF method is used for computation of the ground state energy and electron-hole recombination probability. The results are compared to Hartree-Fock and explicitly correlated full configuration interaction (R12-FCI) calculations. The results indicate that an accurate description of the electron-hole wavefunction at short electron-hole inter-particle distances is crucial for qualitative description of the electron-hole recombination probability. The eh-XCHF method successfully addresses this issue and comparison of eh-XCHF calculations with R12-FCI shows good agreement. The quality of the mean field approximation for electron-hole system is also investigated by comparing HF and R12-FCI energies for electron-electron and electron-hole systems. It was found that performance of the mean field approximation is worse for the electron-hole system as compared to the corresponding electron-electron system.

1.
M. G.
Bawendi
,
M. L.
Steigerwald
, and
L. E.
Brus
,
Annu. Rev. Phys. Chem.
41
,
477
(
1990
).
2.
G. W.
Bryant
,
Phys. Rev. B
37
,
8763
(
1988
).
3.
H.
Haug
and
S. W.
Koch
,
Quantum Theory of the Optical and Electronic Properties of Semiconductors
(
World Scientific
,
2009
), p.
470
.
4.
S.
Glutsch
,
Excitons in Low-Dimensional Semiconductors
(
Springer
,
2004
).
5.
K.
Barnham
and
D.
Vvedensky
,
Low-Dimensional Semiconductor Structures: Fundamentals and Device Applications
(
Cambridge University Press
,
2001
).
6.
L.
He
,
G.
Bester
, and
A.
Zunger
,
Phys. Rev. Lett.
94
,
016801
(
2005
).
7.
F.
Tassone
and
C.
Piermarocchi
,
Phys. Rev. Lett.
82
,
843
(
1999
).
8.
F.
Rossi
and
E.
Molinari
,
Phys. Rev. Lett.
76
,
3642
(
1996
).
9.
G.
Pal
,
G.
Lefkidis
,
H. C.
Schneider
, and
W.
Hübner
,
J. Chem. Phys.
133
,
154309
(
2010
).
10.
D. H.
Chae
,
T.
Utikal
,
S.
Weisenburger
,
H.
Giessen
,
K. V.
Klitzing
,
M.
Lippitz
, and
J.
Smet
,
Nano Lett.
11
,
1379
(
2011
).
11.
V.
Perebeinos
,
J.
Tersoff
, and
P.
Avouris
,
Nano Lett.
5
,
2495
(
2005
).
12.
P.
Puschnig
and
C.
Ambrosch-Draxl
,
Phys. Rev. Lett.
89
,
056405
1
(
2002
).
13.
N.
Baer
,
C.
Gies
,
J.
Wiersig
, and
F.
Jahnke
,
Eur. Phys. J. B
50
,
411
(
2006
).
14.
J.
Krüger
,
R.
Plass
,
M.
Grätzel
,
P. J.
Cameron
, and
L. M.
Peter
,
J. Phys. Chem. B
107
,
7536
(
2003
).
15.
M.
Achermann
,
M. A.
Petruska
,
S.
Kos
,
D. L.
Smith
,
D. D.
Koleske
, and
V. I.
Klimov
,
Nature (London)
429
,
642
(
2004
).
16.
M. J.
Hetzer
,
Y. M.
Strzhemechny
,
M.
Gao
,
M. A.
Contreras
,
A.
Zunger
, and
L. J.
Brillson
,
Appl. Phys. Lett.
86
,
162105
(
2005
).
17.
S.
Lacic
and
O.
Inganäs
,
J. Appl. Phys.
97
,
124901
(
2005
).
18.
C.
Chen
,
S.
Wu
,
J.
Li
,
C.
Wu
,
J.
Chen
, and
K.
Ho
,
Adv. Mater.
19
,
3888
(
2007
).
19.
R. R.
King
,
D. C.
Law
,
K. M.
Edmondson
,
C. M.
Fetzer
,
G. S.
Kinsey
,
H.
Yoon
,
R. A.
Sherif
, and
N. H.
Karam
,
Appl. Phys. Lett.
90
,
183516
(
2007
).
20.
C.
Wang
,
A.
Heller
, and
H.
Gerischer
,
J. Am. Chem. Soc.
114
,
5230
(
1992
).
21.
J.
Tang
,
J. R.
Durrant
, and
D. R.
Klug
,
J. Am. Chem. Soc.
130
,
13885
(
2008
).
22.
N. O.
Gopal
,
H.
Lo
,
S.
Sheu
, and
S.
Ke
,
J. Am. Chem. Soc.
132
,
10982
(
2010
).
23.
N.
Wu
,
J.
Wang
,
D. N.
Tafen
,
H.
Wang
,
J.
Zheng
,
J. P.
Lewis
,
X.
Liu
,
S. S.
Leonard
, and
A.
Manivannan
,
J. Am. Chem. Soc.
132
,
6679
(
2010
).
24.
C. W.
Tang
and
S. A.
Vanslyke
,
Appl. Phys. Lett.
51
,
913
(
1987
).
25.
C. W.
Tang
,
S. A.
Vanslyke
, and
C. H.
Chen
,
J. Appl. Phys.
65
,
3610
(
1989
).
26.
J. E.
Kroeze
,
N.
Hirata
,
S.
Koops
,
M. K.
Nazeeruddin
,
L.
Schmidt-Mende
,
M.
Grätzel
, and
J. R.
Durrant
,
J. Am. Chem. Soc.
128
,
16376
(
2006
).
27.
L. V.
Butov
,
C. W.
Lai
,
A. L.
Ivanov
,
A. C.
Gossard
, and
D. S.
Chemla
,
Nature (London)
417
,
47
(
2002
).
28.
S.
Kim
,
B.
Fisher
,
H.-J.
Eisler
, and
M.
Bawendi
,
J. Am. Chem. Soc.
125
,
11466
(
2003
).
29.
S. A.
Ivanov
,
A.
Piryatinski
,
J.
Nanda
,
S.
Tretiak
,
K. R.
Zavadil
,
W. O.
Wallace
,
D.
Werder
, and
V. I.
Klimov
,
J. Am. Chem. Soc.
129
,
11708
(
2007
).
30.
P.
Reiss
,
M.
Protière
, and
L.
Li
,
Small
5
,
154
(
2009
).
31.
V. I.
Klimov
,
J. Phys. Chem. B
110
,
16827
(
2006
).
32.
V. I.
Klimov
,
S. A.
Ivanov
,
J.
Nanda
,
M.
Achermann
,
I.
Bezel
,
J. A.
McGuire
, and
A.
Piryatinski
,
Nature (London)
447
,
441
(
2007
).
33.
G.
Onida
,
L.
Reining
, and
A.
Rubio
,
Rev. Mod. Phys.
74
,
601
(
2002
).
34.
M.
Rohlfing
and
S. G.
Louie
,
Phys. Rev. B: Condens. Matter Mater. Phys.
62
,
4927
(
2000
).
35.
36.
L. E.
Brus
,
J. Chem. Phys.
80
,
4403
(
1984
).
37.
M.
Braskén
,
M.
Lindberg
,
D.
Sundholm
, and
J.
Olsen
,
Phys. Rev. B
61
,
7652
(
2000
).
38.
Y. Z.
Hu
,
M.
Lindberg
, and
S. W.
Koch
,
Phys. Rev. B
42
,
1713
(
1990
).
39.
T.
Vänskä
,
M.
Lindberg
,
J.
Olsen
, and
D.
Sundholm
,
Phys. Status Solidi B
243
,
4035
(
2006
).
41.
X.
Zhu
,
M. S.
Hybertsen
, and
P. B.
Littlewood
,
Phys. Rev. B
54
,
13575
(
1996
).
42.
O.
Lehtonen
,
D.
Sundholm
, and
T.
Vanska
,
Phys. Chem. Chem. Phys.
10
,
4535
(
2008
).
43.
A.
Franceschetti
and
A.
Zunger
,
Phys. Rev. Lett.
78
,
915
(
1997
).
44.
A.
Franceschetti
,
H.
Fu
,
L.
Wang
, and
A.
Zunger
,
Phys. Rev. B
60
,
1819
(
1999
).
45.
A.
Franceschetti
and
A.
Zunger
,
Phys. Rev. B
62
,
2614
(
2000
).
46.
L. W.
Wang
,
M.
Califano
,
A.
Zunger
, and
A.
Franceschetti
,
Phys. Rev. Lett.
91
,
056404
(
2003
).
47.
J. W.
Luo
,
A.
Franceschetti
, and
A.
Zunger
,
Nano Lett.
8
,
3174
(
2008
).
48.
M.
Califano
,
A.
Franceschetti
, and
A.
Zunger
,
Phys. Rev. B
75
,
115401
(
2007
).
49.
G.
Narvaez
,
G.
Bester
, and
A.
Zunger
,
Phys. Rev. B
72
,
245318
(
2005
).
50.
M.
Califano
,
A.
Zunger
, and
A.
Franceschetti
,
Nano Lett.
4
,
525
(
2004
).
51.
M.
Califano
,
A.
Zunger
, and
A.
Franceschetti
,
Appl. Phys. Lett.
84
,
2409
(
2004
).
52.
S.
Corni
,
M.
Brasken
,
M.
Lindberg
,
J.
Olsen
, and
D.
Sundholm
,
Phys. Rev. B
67
,
085314
(
2003
).
53.
S.
Corni
,
M.
Brasken
,
M.
Lindberg
,
J.
Olsen
, and
D.
Sundholm
,
Phys. E
18
,
436
(
2003
).
54.
W.
Lester
and
B.
Hammond
,
Annu. Rev. Phys. Chem.
41
,
283
(
1990
).
55.
W.
Foulkes
,
L.
Mitas
,
R.
Needs
, and
G.
Rajagopal
,
Rev. Mod. Phys.
73
,
33
(
2001
).
56.
W.
Klopper
,
F. R.
Manby
,
S.
Ten-No
, and
E. F.
Valeev
,
Int. Rev. Phys. Chem.
25
,
427
(
2006
).
57.
W.
von der Linden
,
Phys. Rep., Phys. Lett.
220
,
53
(
1992
).
58.
S.
Corni
,
M.
Brasken
,
M.
Lindberg
,
J.
Olsen
, and
D.
Sundholm
,
Phys. Rev. B
67
,
045313
(
2003
).
59.
J.
Shumway
and
D. M.
Ceperley
,
Phys. Rev. B
63
,
165209
(
2001
).
60.
B. J.
Persson
and
P. R.
Taylor
,
J. Chem. Phys.
105
,
5915
(
1996
).
61.
S. F.
Boys
,
Proc. R. Soc. London, Ser. A
258
,
402
(
1960
).
62.
S. A.
Varganov
and
T. J.
Martínez
,
J. Chem. Phys.
132
(
2010
).
63.
C.
Swalina
,
M. V.
Pak
,
A.
Chakraborty
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. A
110
,
9983
(
2006
).
64.
A.
Chakraborty
,
M. V.
Pak
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
129
,
014101
(
2008
).
65.
A.
Chakraborty
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
129
,
204101
(
2008
).
66.
M. V.
Pak
,
A.
Chakraborty
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. A
113
,
4004
(
2009
).
67.
M.
Chamarro
,
C.
Gourdon
,
P.
Lavallard
,
O.
Lublinskaya
, and
A.
Ekimov
,
Phys. Rev. B
53
,
1336
(
1996
).
68.
A. L.
Efros
and
M.
Rosen
,
Annu. Rev. Mater. Sci.
30
,
475
(
2000
).
69.
T.
Takagahara
,
Phys. Rev. B
47
,
4569
(
1993
).
70.
G. W.
Bryant
,
Phys. Rev. B
37
,
8763
(
1988
).
71.
T.
Takagahara
and
K.
Takeda
,
Phys. Rev. B
46
,
15578
(
1992
).
72.
B.
Delley
and
E. F.
Steigmeier
,
Phys. Rev. B
47
,
1397
(
1993
).
73.
S. H.
Tolbert
,
A. B.
Herhold
,
C. S.
Johnson
, and
A. P.
Alivisatos
,
Phys. Rev. Lett.
73
,
3266
(
1994
).
74.
G.
Ledoux
,
J.
Gong
,
F.
Huisken
,
O.
Guillois
, and
C.
Reynaud
,
Appl. Phys. Lett.
80
,
4834
(
2002
).
75.
A.
Franceschetti
,
L.
Wang
,
H.
Fu
, and
A.
Zunger
,
Phys. Rev. B
58
,
13367
(
1998
).
76.
J.
Luo
,
A.
Franceschetti
, and
A.
Zunger
,
Nano Lett.
9
,
2648
(
2009
).
77.
F.
Reboredo
,
A.
Franceschetti
, and
A.
Zunger
,
Phys. Rev. B
61
,
13073
(
2000
).
78.
A.
Efros
and
M.
Rosen
,
Annu. Rev. Mater. Sci.
30
,
475
(
2000
).
79.
S.
Brovelli
,
R. D.
Schaller
,
S. A.
Crooker
,
F.
Garcia-Santamaria
,
Y.
Chen
,
R.
Viswanatha
,
J. A.
Hollingsworth
,
H.
Htoon
, and
V. I.
Klimov
,
Nat. Commun.
2
,
280
(
2011
).
80.
G.
Bester
,
S.
Nair
, and
A.
Zunger
,
Phys. Rev. B
67
,
161306
(
2003
).
81.
I. A.
Akimov
,
K. V.
Kavokin
,
A.
Hundt
, and
F.
Henneberger
,
Phys. Rev. B: Condens. Matter Mater. Phys.
71
,
1
(
2005
).
82.
G. V.
Astakhov
,
A. V.
Koudinov
,
K. V.
Kavokin
,
I. S.
Gagis
,
Y. G.
Kusrayev
,
W.
Ossau
, and
L. W.
Molenkamp
,
Phys. Rev. Lett.
99
,
016601
(
2007
).
83.
J.
He
,
H.
Zhong
, and
G. D.
Scholes
,
Phys. Rev. Lett.
105
,
046601
(
2010
).
84.
S. M.
Santos
,
B.
Yuma
,
S.
Berciaud
,
J.
Shaver
,
M.
Gallart
,
P.
Gilliot
,
L.
Cognet
, and
B.
Lounis
,
Phys. Rev. Lett.
107
,
187401
(
2011
).
85.
R.
Matsunaga
,
K.
Matsuda
, and
Y.
Kanemitsu
,
Phys. Rev. Lett.
106
,
037404
(
2011
).
87.
G.
Lamouche
and
G.
Fishman
,
J. Phys.: Condens. Matter
10
,
7857
(
1998
).
88.
M.
Elsaid
,
Semicond. Sci. Technol.
9
,
272
(
1994
).
90.
C. M.
Duque
,
M. E.
Mora-Ramos
, and
C. A.
Duque
,
J. Nanopart. Res.
13
,
6103
(
2011
).
91.
E.
Sadeghi
and
A.
Avazpour
,
Physica B
406
,
241
(
2011
).
93.
M.
Ikezawa
,
S. V.
Nair
,
H. W.
Ren
,
Y.
Masumoto
, and
H.
Ruda
,
Phys. Rev. B
73
,
125321
(
2006
).
94.
T.
Chakraborty
and
P.
Pietiläinen
,
Phys. Rev. Lett.
95
,
136603
(
2005
).
95.
E.
Matito
,
J.
Cioslowski
, and
S. F.
Vyboishchikov
,
Phys. Chem. Chem. Phys.
12
,
6712
(
2010
).
96.
J. P.
Coe
,
A.
Sudbery
, and
I.
D’Amico
,
Phys. Rev. B
77
(
2008
).
97.
N. H.
March
and
A.
Rubio
,
Chem. Phys. Lett.
398
,
445
(
2004
).
98.
D.
Hestenes
,
Am. J. Phys.
39
,
1013
(
1971
).
99.
P.
Cassam-Chenai
,
J. Math. Chem.
15
,
303
(
1994
).
100.
K. C.
Mundim
,
M.
Giambiagi
, and
M. S.
De Giambiagi
,
J. Phys. Chem.
98
,
6118
(
1994
).
101.
P.
Cassam-Chenai
and
F.
Patras
,
J. Math. Phys.
44
,
4884
(
2003
).
102.
U.
Woggon
,
Optical Properties of Semiconductor Quantum Dots
(
Springer
,
1996
), p.
252
.
103.
E.
Burovski
,
A.
Mishchenko
,
N.
Prokof'ev
, and
B.
Svistunov
,
Phys. Rev. Lett.
87
,
186402
(
2001
).
104.
M.
Wimmer
,
S. V.
Nair
, and
J.
Shumway
,
Phys. Rev. B
73
,
165305
(
2006
).
105.
M. C.
Pease
 III
,
Methods of Matrix Algebra
(
Academic
,
New York
,
1965
), p.
406
.
106.
R. C.
James
,
Mathematics Dictionary
(
Springer
,
1992
), p.
548
.
107.
T.
Helgaker
,
P.
Jorgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
Wiley
,
2000
), p.
938
.
108.
B. J.
Persson
and
P. R.
Taylor
,
Theor. Chem. Acc.
97
,
240
(
1997
).
109.
J.
Karwowski
and
L.
Cyrnek
,
Collect. Czech. Chem. Commun.
70
,
864
(
2005
).
110.
J.
Karwowski
,
Int. J. Quantum Chem.
109
,
2456
(
2009
).
111.
R. T.
Pack
and
W.
Byers Brown
,
J. Chem. Phys.
45
,
625
(
1966
).
112.
C. R.
Myers
,
C. J.
Umrigar
,
J. P.
Sethna
, and
J. D.
Morgan
 III
,
Phys. Rev. A
44
,
5537
(
1991
).
113.
D.
Prendergast
,
M.
Nolan
,
C.
Filippi
,
S.
Fahy
, and
J. C.
Greer
,
J. Chem. Phys.
115
,
1626
(
2001
).
114.
W. J.
Hehre
,
R. F.
Stewart
, and
J. A.
Pople
,
J. Chem. Phys.
51
,
2657
(
1969
).
115.
R. F.
Stewart
,
J. Chem. Phys.
52
,
425
(
1970
).
116.
117.
J.-.
Van Der Horst
,
P. A.
Bobbert
,
M. A. J.
Michels
, and
H.
Bässler
,
J. Chem. Phys.
114
,
6950
(
2001
).
118.
J.
Elward
,
J.
Hoffman
, and
A.
Chakraborty
, “
Investigation of electron-hole correlation using explicitly correlated configuration interaction method
,” Chem. Phys. Lett. (in press).
119.
R. A.
Kendall
and
H. A.
Früchtl
,
Theor. Chem. Acc.
97
,
158
(
1997
).
120.
F.
Neese
,
J. Comput. Chem.
24
,
1740
(
2003
).
121.
E. F.
Valeev
,
Chem. Phys. Lett.
395
,
190
(
2004
).
122.
D. P.
Tew
,
W.
Klopper
, and
F. R.
Manby
,
J. Chem. Phys.
127
,
174105
(
2007
).
123.
H.-J.
Werner
,
T. B.
Adler
, and
F. R.
Manby
,
J. Chem. Phys.
126
,
164102
(
2007
).
124.
E. F.
Valeev
,
J. Chem. Phys.
125
,
244106
(
2006
).
125.
J.
Elward
,
J.
Hoja
, and
A.
Chakraborty
, “
Application of XCCI method for many-electron systems
” (unpublished).
You do not currently have access to this content.