We investigate the critical behavior of a near-critical fluid confined between two parallel plates in contact with a reservoir by calculating the order parameter profile and the Casimir amplitudes (for the force density and for the grand potential). Our results are applicable to one-component fluids and binary mixtures. We assume that the walls absorb one of the fluid components selectively for binary mixtures. We propose a renormalized local functional theory accounting for the fluctuation effects. Analysis is performed in the plane of the temperature T and the order parameter in the reservoir ψ. Our theory is universal if the physical quantities are scaled appropriately. If the component favored by the walls is slightly poor in the reservoir, there appears a line of first-order phase transition of capillary condensation outside the bulk coexistence curve. The excess adsorption changes discontinuously between condensed and noncondensed states at the transition. With increasing T, the transition line ends at a capillary critical point

$T=T_c^{\rm ca}$
T=Tc ca slightly lower than the bulk critical temperature Tc for the upper critical solution temperature. The Casimir amplitudes are larger than their critical point values by 10–100 times at off-critical compositions near the capillary condensation line.

1.
R.
Evans
,
J. Phys.: Condens. Matter
2
,
8989
(
1990
).
2.
L. D.
Gelb
,
K. E.
Gubbins
,
R.
Radhakrishnan
, and
M.
Sliwinska-Bartkowiak
,
Rep. Prog. Phys.
62
,
1573
(
1999
).
3.
J. W.
Cahn
,
J. Chem. Phys.
66
,
3667
(
1977
).
4.
P. G.
de Gennes
,
Rev. Mod. Phys.
57
,
827
(
1985
).
5.
D.
Chandler
,
Nature (London)
437
,
640
(
2005
).
6.
A.
Onuki
and
H.
Kitamura
,
J. Chem. Phys.
121
,
3143
(
2004
).
7.
A.
Onuki
,
R.
Okamoto
, and
T.
Araki
,
Bull. Chem. Soc. Jpn.
84
,
569
(
2011
);
A.
Onuki
and
R.
Okamoto
,
Curr. Opin. Colloid Interface Sci.
16
,
525
(
2011
).
8.
R.
Okamoto
and
A.
Onuki
,
Phys. Rev. E
84
,
051401
(
2011
).
9.
M. E.
Fisher
and
H.
Nakanishi
,
J. Chem. Phys.
75
,
5857
(
1981
).
10.
H.
Nakanishi
and
M. E.
Fisher
,
J. Chem. Phys.
78
,
3279
(
1983
).
11.
R.
Evans
and
U. M.B.
Marconi
,
J. Chem. Phys.
86
,
7138
(
1987
).
12.
A.
Maciołek
,
A.
Drzewiński
, and
R.
Evans
,
Phys. Rev. E
64
,
056137
(
2001
);
A.
Drzewiński
,
A.
Maciołek
, and
A.
Barasiński
,
Mol. Phys.
109
,
1133
(
2011
).
13.
Binary mixtures are characterized by the temperature T and the chemical potential difference μ = μ1 − μ2 between the two components at a constant pressure p. In the text, μ = μ − μc in the reservoir, where μc is the bulk critical value.
14.
S.
Samin
and
Y.
Tsori
,
EPL
95
,
36002
(
2011
).
15.
M. E.
Fisher
and
P. G.
de Gennes
,
C. R. Seances Acad. Sci., Ser. B
287
,
207
(
1978
).
16.
M. E.
Fisher
and
H.
Au-Yang
,
Physica
101A
,
255
(
1980
). In their paper the gradient part of the free energy density is proportional to ∇ψp. In the present paper, we set p = 2.
17.
H.
Nakanishi
and
M. E.
Fisher
,
Phys. Rev. Lett.
49
,
1565
(
1982
).
18.
K.
Binder
, in
Phase Transitions and Critical Phenomena
, edited by
C.
Domb
and
J. L.
Lebowitz
(
Academic
,
London
,
1983
), Vol.
8
, p.
1
.
19.
S.
Dietrich
, in
Phase Transitions and Critical Phenomena
, edited by
C.
Domb
and
J. L.
Lebowitz
(
Academic
,
London
,
1988
), Vol.
12
, p.
1
.
20.
J. O.
Indekeu
,
M. P.
Nightingale
, and
W. V.
Wang
,
Phys. Rev. B
34
,
330
(
1986
).
21.
M.
Krech
and
S.
Dietrich
,
Phys. Rev.A
46
,
1886
(
1992
).
22.
M.
Krech
,
J. Phys.: Condens. Matter
11
,
R391
(
1999
).
23.
24.
F.
Schlesener
,
A.
Hanke
, and
S.
Dietrich
,
J. Stat. Phys.
110
,
981
(
2003
). Figure 10 of this paper shows the scaling function for the force density at T = Tc for a film.
25.
O.
Vasilyev
,
A.
Gambassi
,
A.
Maciołek
, and
S.
Dietrich
,
EPL
80
,
60009
(
2007
).
26.
A.
Gambassi
,
A.
Maciołek
,
C.
Hertlein
,
U.
Nellen
,
L.
Helden
,
C.
Bechinger
, and
S.
Dietrich
,
Phys. Rev. E
80
,
061143
(
2009
).
27.
Z.
Borjan
and
P. J.
Upton
,
Phys. Rev. Lett.
81
,
4911
(
1998
).
28.
Z.
Borjan
and
P. J.
Upton
,
Phys. Rev. Lett.
101
,
125702
(
2008
).
29.
M.
Hasenbusch
,
Phys. Rev. B
82
,
174434
(
2010
).
30.
The long-range interaction (∝D−d + 1) in near-critical binary mixtures treated in this paper arises from the slow and universal composition decay in the fluid induced by the wall perturbation. From our viewpoint, it is somewhat misleading to call it the Casimir interaction, though we use “Casimir amplitudes” following the current literature. The Casimir interaction itself was originally found to be induced by the ground-state fluctuations of the electromagnetic field between two mirrors.
31.
A.
Mukhopadhyay
and
B. M.
Law
,
Phys. Rev. Lett.
83
,
772
(
1999
);
R.
Garcia
and
M. H. W.
Chan
,
Phys. Rev. Lett.
83
,
1187
(
1999
);
A.
Mukhopadhyay
and
B. M.
Law
,
Phys. Rev. E
63
,
041605
(
2001
).
32.
33.
S.
Rafai
,
D.
Bonn
, and
J.
Meunier
,
Physica A
386
,
31
(
2007
).
34.
P.
Hopkins
,
A. J.
Archer
, and
R.
Evans
,
J. Chem. Phys.
131
,
124704
(
2009
).
35.
D.
Beysens
and
D.
Estève
,
Phys. Rev. Lett.
54
,
2123
(
1985
);
[PubMed]
B. M.
Law
,
J.-M.
Petit
, and
D.
Beysens
,
Phys. Rev. E
57
,
5782
(
1998
);
D.
Beysens
and
T.
Narayanan
,
J. Stat. Phys.
95
,
997
(
1999
).
36.
P. D.
Gallagher
and
J. V.
Maher
,
Phys. Rev. A
46
,
2012
(
1992
);
[PubMed]
P. D.
Gallagher
,
M. L.
Kurnaz
, and
J. V.
Maher
,
Phys. Rev.
A 46
,
7750
(
1992
).
37.
Y.
Jayalakshmi
and
E. W.
Kaler
,
Phys. Rev. Lett.
78
,
1379
(
1997
).
38.
H.
Guo
,
T.
Narayanan
,
M.
Sztucki
,
P.
Schall
, and
G.
Wegdam
,
Phys. Rev. Lett.
100
,
188303
(
2008
).
39.
D.
Bonn
,
J.
Otwinowski
,
S.
Sacanna
,
H.
Guo
,
G.
Wegdam
, and
P.
Schall
,
Phys. Rev. Lett.
103
,
156101
(
2009
).
40.
C.
Hertlein
,
L.
Helden
,
A.
Gambassi
,
S.
Dietrich
, and
C.
Bechinger
,
Nature (London)
451
,
172
(
2008
).
41.
U.
Nellen
,
J.
Dietrich
,
L.
Helden
,
S.
Chodankar
,
K.
Nygard
,
J. Friso
van der Veen
, and
C.
Bechinger
,
Soft Matter
7
,
5360
(
2011
).
42.
Z.
Borjan
and
P. J.
Upton
,
Phys. Rev. E
63
,
065102
(R) (
2001
).
43.
A.
Onuki
,
Phase Transition Dynamics
(
Cambridge University Press
,
Cambridge, England
,
2002
).
44.
D.
Stauffer
,
D.
Ferer
, and
M.
Wortis
,
Phys. Rev. Lett.
29
,
345
(
1972
).
45.
P. C.
Hohenberg
,
A.
Aharony
,
B. I.
Halperin
, and
E. D.
Siggia
,
Phys. Rev. B
13
,
2986
(
1976
).
46.
J.
Rudnick
and
D.
Jasnow
,
Phys. Rev. Lett.
48
,
1059
(
1982
);
J.
Rudnick
and
D.
Jasnow
,
Phys. Rev. Lett.
49
,
1595
(
1982
).
47.
P.
Schofield
,
Phys. Rev. Lett.
22
,
606
(
1969
);
P.
Schofield
,
J. D.
Lister
, and
J. T.
Ho
,
Phys. Rev. Lett.
23
,
1098
(
1969
).
48.
P. C.
Hohenberg
and
M.
Barmatz
,
Phys. Rev. A
6
,
289
(
1972
). In this paper, explicit expressions were presented for the Helmholtz free energy and the entropy in the linear parametric model (but outside the coexistence curve).
49.
D. J.
Wallace
, in
Phase Transitions and Critical Phenomena
, edited by
C.
Domb
and
J. L.
Lebowitz
(
Academic
,
London
,
1976
), Vol.
6
, p.
294
.
50.
M. E.
Fisher
and
P. J.
Upton
,
Phys. Rev. Lett.
65
,
3405
(
1990
);
[PubMed]
M. E.
Fisher
,
S.-Y.
Zinn
, and
P. J.
Upton
,
Phys. Rev. B
59
,
14533
(
1999
).
51.
The singular free energy density is of the form
$f_{\rm s} = -k_BT_c\xi _0^{-d} A_{+}\tau ^{2-\alpha }$
fs=kBTcξ0dA+τ2α
for τ > 0 and ψ = 0, where A+ is a universal number of order 0.1.43,45 Twice differentiating fs with respect to T, we obtain the well-known specific heat
$C= k_B\xi _0^{-d}(2-\alpha )(1-\alpha ) A_{+}\tau ^{-\alpha }$
C=kBξ0d(2α)(1α)A+τα
.
52.
J. F.
Nicoll
and
P. C.
Albright
,
Phys. Rev. B
31
,
4576
(
1985
).
53.
A. J.
Liu
and
M. E.
Fisher
,
Physica A
156
,
35
(
1989
).
54.
M. R.
Moldover
,
Phys. Rev. A
31
,
1022
(
1985
);
T.
Mainzer
and
D.
Woermann
,
Physica A
225
,
312
(
1996
).
55.
The susceptibility χ is given by kBTcψ/μχ = 1 + (1 − α)φ + β(1 − 2β)φ2 − [4(1 − α) + 10αS]Sφ/[2 − α + 4(1 − α)S + 5αS2], where φ = 2(1 − S)/[2β + (1 − 2β)S].
56.
G.
Flöter
and
S.
Dietrich
,
Z. Phys. B
97
,
213
(
1995
).
You do not currently have access to this content.