We present a study of an explicit all-atom representation of nanocrystals of experimentally relevant sizes (up to 6 nm), “capped” with alkyl chain ligands, in vacuum. We employ all-atom molecular dynamics simulation methods in concert with a well-tested intermolecular potential model, MM3 (molecular mechanics 3), for the studies presented here. These studies include determining the preferred conformation of an isolated single nanocrystal (NC), pairs of isolated NCs, and (presaging studies of superlattice arrays) unit cells of NC superlattices. We observe that very small NCs (3 nm) behave differently in a superlattice as compared to larger NCs (6 nm and above) due to the conformations adopted by the capping ligands on the NC surface. Short ligands adopt a uniform distribution of orientational preferences, including some that lie against the face of the nanocrystal. In contrast, longer ligands prefer to interdigitate. We also study the effect of changing ligand length and ligand coverage on the NCs on the preferred ligand configurations. Since explicit all-atom modeling constrains the maximum system size that can be studied, we discuss issues related to coarse-graining the representation of the ligands, including a comparison of two commonly used coarse-grained models. We find that care has to be exercised in the choice of coarse-grained model. The data provided by these realistically sized ligand-capped NCs, determined using explicit all-atom models, should serve as a reference standard for future models of coarse-graining ligands using united atom models, especially for self-assembly processes.

1.
E. V.
Shevchenko
,
D. V.
Talapin
,
N. A.
Kotov
,
S.
O’Brien
, and
C. B.
Murray
,
Nature (London)
439
,
55
(
2006
).
2.
A. E.
Saunders
and
B. A.
Korgel
,
Chem. Phys. Chem.
6
,
61
(
2005
).
3.
M.
Grzelczak
,
J.
Vermant
,
E. M.
Furst
, and
L. M.
Liz-Marzán
,
ACS Nano
4
,
3591
(
2010
).
4.
J. Y.
Ku
,
D. M.
Aruguete
,
A. P.
Alivisatos
, and
P. L.
Geissler
,
J. Am. Chem. Soc.
133
,
838
(
2011
).
5.
Y.
Lin
,
A.
Böker
,
J.
He
,
K.
Sill
,
H.
Xiang
,
C.
Abetz
,
X.
Li
,
J.
Wang
,
T.
Emrick
,
S.
Long
,
Q.
Wang
,
A.
Balazs
, and
T. P.
Russell
,
Nature (London)
434
,
55
(
2005
).
6.
S.
Shrestha
,
Prog. Photovoltaics
19
,
123
(
2011
).
7.
Z.
Quan
,
L.
Valentin-Bromberg
,
W. S.
Loc
, and
J.
Fang
,
Chem. Asian J.
6
,
1126
(
2011
).
8.
H. W.
Hillhouse
and
M. C.
Beard
,
Curr. Opin. Colloid Interface Sci.
14
,
245
(
2009
).
9.
J. H.
Bang
and
P. V.
Kamat
,
ACS Nano
3
,
1467
(
2009
).
10.
W. D.
Luedtke
and
U.
Landman
,
J. Chem. Phys.
100
,
13323
(
1996
).
11.
P.
Schapotschnikow
,
R.
Pool
, and
T. J. H.
Vlugt
,
Nano Lett.
8
,
2930
(
2008
).
12.
P.
Schapotschnikow
,
M. A.
van Huis
,
H. W.
Zandbergen
,
D.
Vanmaekelbergh
, and
T. J. H.
Vlugt
,
Nano Lett.
10
,
3966
(
2010
).
13.
P.
Schapotschnikow
and
T. J. H.
Vlugt
,
J. Phys. Chem. C
114
,
2531
(
2010
).
14.
S. O.
Nielsen
,
C. F.
Lopez
,
G.
Srinivas
, and
M. L.
Klein
,
J. Phys.: Condens. Matter
16
,
R481
(
2004
).
15.
A.
Badia
,
L.
Cuccia
,
L.
Demers
,
F.
Morin
, and
R. B.
Lennox
,
J. Am. Chem. Soc.
119
,
2682
(
1997
).
16.
J. M. D.
Lane
and
G. S.
Grest
,
Phys. Rev. Lett.
104
,
235501
(
2010
).
17.
A.
Yang
and
C.
Weng
,
J. Phys. Chem. C
114
,
8697
(
2010
).
18.
A.
Yang
,
C.
Weng
, and
T.
Chen
,
J. Chem. Phys.
135
,
034101
(
2011
).
19.
W. L.
Jorgensen
,
J. D.
Madura
, and
C. J.
Swenson
,
J. Am. Chem. Soc.
106
,
6638
(
1984
).
20.
S.
Toxvaerd
,
J. Chem. Phys.
93
,
4290
(
1990
).
21.
J. I.
Siepmann
,
S.
Karaborni
, and
B.
Smit
,
Nature (London)
365
,
330
(
1993
).
22.
M. G.
Martin
and
J. I.
Siepmann
,
J. Phys. Chem. B
102
(
14
),
2569
(
1998
).
23.
S. K.
Nath
,
F. A.
Escobedo
, and
J. J.
de Pablo
,
J. Chem. Phys.
108
,
9905
(
1998
).
24.
S. K.
Nath
,
B. J.
Banaszak
, and
J. J.
de Pablo
,
J. Chem. Phys.
114
,
3612
(
2001
).
25.
C.
Li
,
P.
Choi
, and
P. R.
Sundararajan
,
Polymer
51
,
2803
(
2010
).
26.
W.
Paul
,
Do Y.
Yoon
, and
G. D.
Smith
,
J. Chem. Phys.
103
,
1702
(
1995
).
27.
H. L.
Scott
,
Curr. Opin. Struct. Biol.
12
,
495
(
2002
).
28.
S. L.
Mayo
,
B. D.
Olafson
, and
W. A.
Goddard
,
J. Phys. Chem.
94
,
8897
(
1990
).
29.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
(
45
),
11225
(
1996
).
30.
N. P.
Adhikari
,
X. H.
Peng
,
A.
Alizadeh
,
S.
Ganti
,
S. K.
Nayak
, and
S. K.
Kumar
,
Phys. Rev. Lett.
93
,
188301
(
2004
).
31.
C.
Schliehe
,
B. H.
Juarez
,
M.
Pelletier
,
S.
Jander
,
D.
Greshnykh
,
M.
Nagel
,
A.
Meyer
,
S.
Foerster
,
A.
Kornowski
,
C.
Klinke
, and
H.
Weller
,
Science
329
,
550
(
2010
).
32.
M. A.
Sliem
,
A.
Chemseddine
,
U.
Bloeck
, and
R. A.
Fischer
,
Cryst. Eng. Comm.
13
,
483
(
2011
).
33.
I.
Moreels
,
B.
Frintzinger
,
J. C.
Martins
, and
Z.
Hens
,
J. Am. Chem. Soc.
130
,
15081
(
2008
).
34.
G.
Schaftenaar
and
J.
Noordik
,
J. Comput.-Aided Mol. Des.
14
,
123
(
2000
).
35.
J. W.
Ponder
, tinker – software tools for molecular design, (
2010
); see http://dasher.wustl.edu/tinker/.
36.
N.
Allinger
,
Y.
Yuh
, and
J.-H.
Lii
,
J. Am. Chem. Soc.
111
,
8551
(
1989
).
37.
A. D.
MacKerell
 Jr.
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
 Jr.
,
J. D.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph-McCarthy
,
L.
Kuchnir
,
K.
Kuczera
,
F. T. K.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D. T.
Nguyen
,
B.
Prodhom
,
W. E.
Reiher
 III
,
B.
Roux
,
M.
Schlenkrich
,
J. C.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiorkiewicz-Kuczera
,
D.
Yin
, and
M.
Karplus
,
J. Phys. Chem. B
102
(
18
),
3586
(
1998
).
38.
K. H.
Chen
,
J. H.
Lii
,
G. A.
Walker
,
Y.
Xie
,
H. F.
Schaefer
 III
, and
N. L.
Allinger
,
J. Phys. Chem. A
110
,
7202
(
2006
).
39.
K. H.
Chen
,
G. A.
Walker
, and
N. L.
Allinger
,
J. Mol. Struct.: THEOCHEM
490
,
87
(
1999
).
40.
J. E.
Goose
and
P.
Clancy
,
J. Phys. Chem. C
111
,
43
(
2007
).
41.
J. E.
Goose
,
E. L.
First
, and
P.
Clancy
,
Phys. Rev. B
81
,
205310
(
2010
).
42.
R.
Cantrell
and
P.
Clancy
,
Surf. Sci.
602
(
22
),
3499
(
2008
).
43.
A. P.
Kaushik
and
P.
Clancy
,
Surf. Sci.
605
(
13–14
),
1185
(
2011
).
45.
J. J.
Choi
,
C. R.
Bealing
,
K.
Bian
,
K. J.
Hughes
,
W.
Zhang
,
D. M.
Smilgies
,
R. G.
Hennig
,
J. R.
Engstrom
, and
T.
Hanrath
,
J. Am. Chem. Soc.
133
(
9
),
3131
(
2011
).
46.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
,
J. Chem. Phys.
101
,
4177
(
1994
).
47.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
48.
W.
Shinoda
,
M.
Shiga
, and
M.
Mikami
,
Phys. Rev. B
69
,
134103
(
2004
).
49.
M. E.
Tuckerman
,
J.
Alejandre
,
R.
Lopez-Rendon
,
A. L.
Jochim
, and
G. J.
Martyna
,
J. Phys. A
39
,
5629
(
2006
).
50.
G.
Ciccotti
,
M.
Ferrario
,
J. T.
Hynesa
, and
R.
Kapral
,
Chem. Phys.
129
,
241
(
1989
).
51.
E.
Guardia
,
R.
Rey
, and
J. A.
Padro
,
Chem. Phys.
155
,
187
(
1991
).
52.
C.
Jarzynski
,
Phys. Rev. Lett.
78
,
2690
(
1997
).
53.
C.
Jarzynski
,
Phys. Rev. E
56
,
5018
(
1997
).
55.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1987
).
56.
P. Kr.
Ghorai
and
S. C.
Glotzer
,
J. Phys. Chem. C
111
,
15857
(
2007
).
57.
T.
Hanrath
, private communication (
2011
); see details in the supplementary material (Ref. 59).
58.
Y.
Li
,
S.-T.
Lin
, and
W. A.
Goddard
 III
,
J. Am. Chem. Soc.
126
,
1872
(
2004
).
59.
See supplementary material at http://dx.doi.org/10.1063/1.3689973 for some figures of isolated nanocrystals with ligands grafted on at different grafting densities as well as some plots of the variation of interaction energy between two nanocrystals as a function of ligand grafting density and ligand length. The supplemenary material provides some experimental data from differential scanning calorimetry to investigate ligand “bundling”. The tables containing the force field parameters for the OPLS UA model (Ref. 19) as well as the Paul et al. UA model (Ref. 26) are also provided.

Supplementary Material

You do not currently have access to this content.