The electronic excited states and electronic absorption spectra of annulated dinuclear free-base phthalocyanine (C58H30N16) are studied through quantum chemical calculations using the symmetry-adapted cluster-configuration interaction (SAC-CI) method. Three tautomers are possible with respect to the position of the pyrrole protons; therefore, the SAC-CI calculations for these tautomers were performed. The structures of the Q-band states are discussed based on the character of their molecular orbitals. The lower energy shift of the Q-bands because of dimerization is explained by the decrease in the HOMO–LUMO gaps resulting from the bonding and antibonding interactions between the monomer units. The electronic dipole moments of the nonsymmetric tautomer were calculated, and the possibility of charge-separated excited states is discussed. The relative energies of these tautomers are examined using density functional theory (DFT) calculations for several peripheral substituents. The relative energies of these tautomers significantly depend on the substituents, and therefore, the abundance ratios of the three tautomers were affected by the substituents. The absorption spectra were simulated from the SAC-CI results weighted by the Boltzmann factors obtained from the DFT calculations. The SAC-CI spectra reproduce the experimental findings well. The thermal-averaged SAC-CI spectra could explain the observed substituent effect on the structure of the Q-bands in terms of the relative stabilities and the abundance ratios of the tautomers. The SAC-CI and time-dependent density functional theory calculations are also compared. The CAM-B3LYP results agreed with the trends of the SAC-CI results; however, the CAM-B3LYP calculation overestimated the excitation energies in comparison with the SAC-CI and experimental results.

1.
C.
Hampel
and
H.-J.
Werner
,
J. Chem. Phys.
104
,
6286
(
1996
).
2.
G. E.
Scuseria
and
P. Y.
Ayala
,
J. Chem. Phys.
111
,
8330
(
1999
).
3.
M.
Schütz
and
H.-J.
Werner
,
J. Chem. Phys.
114
,
661
(
2001
).
4.
S.
Li
,
J.
Ma
, and
Y.
Jiang
,
J. Comput. Chem.
23
,
237
(
2002
).
5.
N.
Flocke
and
R. J.
Bartlett
,
J. Chem. Phys.
121
,
10935
(
2004
).
6.
D. G.
Fedorov
and
K.
Kitaura
,
J. Chem. Phys.
123
,
134103
(
2005
).
7.
O.
Christiansen
,
P.
Manninen
,
P.
Jørgensen
, and
J.
Olsen
,
J. Chem. Phys.
124
,
084103
(
2006
).
8.
J. E.
Subotnik
,
A.
Sodt
, and
M.
Head-Gordon
,
J. Chem. Phys.
125
,
074116
(
2006
).
9.
J.
Friedrich
,
M.
Hanrath
, and
M.
Dolg
,
J. Chem. Phys.
126
,
154110
(
2007
).
10.
M.
Kobayashi
and
H.
Nakai
,
J. Chem. Phys.
129
,
044103
(
2008
).
11.
W.
Li
,
P.
Piecuch
,
J. R.
Gour
, and
S.
Li
,
J. Chem. Phys.
131
,
114109
(
2009
).
12.
M.
Ziółkowski
,
B.
Jansík
,
T.
Kjærgaard
, and
P.
Jørgensen
,
J. Chem. Phys.
133
,
014107
(
2010
).
13.
S.
Grimme
and
M.
Parac
,
ChemPhysChem
4
,
292
(
2003
).
14.
M.
Dierksen
and
S.
Grimme
,
J. Phys. Chem. A
108
,
10225
(
2004
).
15.
A.
Dreuw
and
M.
Head-Gordon
,
J. Am. Chem. Soc.
126
,
4007
(
2004
).
16.
R. J.
Magyar
and
S.
Tretiak
,
J. Chem. Theory Comput.
3
,
976
(
2007
).
17.
M. J.
Peach
,
P.
Benfield
,
T.
Helgaker
, and
D. J.
Tozer
,
J. Chem. Phys.
128
,
044118
(
2008
).
18.
H.
Nakatsuji
and
K.
Hirao
,
Chem. Phys. Lett.
47
,
569
(
1977
);
H.
Nakatsuji
and
K.
Hirao
,
J. Chem. Phys.
68
,
2053
(
1978
).
19.
H.
Nakatsuji
,
Chem. Phys. Lett.
59
,
362
(
1978
);
H.
Nakatsuji
,
Chem. Phys. Lett.
67
,
329
(
1979
);
H.
Nakatsuji
,
Chem. Phys. Lett.
67
,
334
(
1979
).
20.
H.
Nakatsuji
,
J.
Hasegawa
, and
M.
Hada
,
J. Chem. Phys.
104
,
2321
(
1996
).
21.
K.
Toyota
,
J.
Hasegawa
, and
H.
Nakatsuji
,
Chem. Phys. Lett.
250
,
437
(
1996
).
22.
K.
Toyota
,
J.
Hasegawa
, and
H.
Nakatsuji
,
J. Phys. Chem.
101
,
446
(
1997
).
23.
T.
Miyahara
,
Y.
Tokita
, and
H.
Nakatsuji
,
J. Phys. Chem. B
105
,
7341
(
2001
).
24.
T.
Miyahara
,
H.
Nakatsuji
,
J.
Hasegawa
,
A.
Osuka
,
N.
Aratani
, and
A.
Tsuda
,
J. Chem. Phys.
117
,
11196
(
2002
).
25.
J.
Hasegawa
,
K.
Takata
,
T.
Miyahara
,
S.
Neya
,
M. J.
Frisch
, and
H.
Nakatsuji
,
J. Phys. Chem. A
109
,
3187
(
2005
).
26.
H.
Nakatsuji
,
T.
Miyahara
, and
R.
Fukuda
,
J. Chem. Phys.
126
,
084104
(
2007
).
27.
H.
Nakatsuji
,
Chem. Phys.
75
,
425
(
1983
).
28.
R.
Fukuda
and
H.
Nakatsuji
,
J. Chem. Phys.
128
,
094105
(
2008
).
29.
H.
Fabian
,
H.
Nakazumi
, and
M.
Matsuoka
,
Chem. Rev.
92
,
1197
(
1992
).
30.
N.
Kobayashi
,
S.
Nakajima
,
H.
Ogata
, and
T.
Fukuda
,
Chem.-Eur. J.
10
,
6294
(
2004
).
31.
R.
Fukuda
,
M.
Ehara
, and
H.
Nakatsuji
,
J. Chem. Phys.
133
,
144316
(
2010
).
32.
M. G. H.
Vicente
,
M. T.
Cancilla
,
C. B.
Lebrilla
, and
K. M.
Smith
,
Chem. Commun.
1998
,
2355
.
33.
H. L.
Anderson
,
Chem. Commun.
1999
,
2323
.
34.
A.
Tsuda
,
H.
Furuta
, and
A.
Osuka
,
Angew. Chem., Int. Ed.
39
,
2549
(
2000
).
35.
A.
Tsuda
,
H.
Furuta
, and
A.
Osuka
,
J. Am. Chem. Soc.
123
,
10304
(
2001
).
36.
Y.
Nakamura
,
N.
Aratani
,
H.
Shinokubo
,
A.
Takagi
,
T.
Kawai
,
T.
Matsumoto
,
Z. S.
Yoon
,
D. Y.
Kim
,
T. K.
Ahn
,
D.
Kim
,
A.
Muranaka
,
N.
Kobayashi
, and
A.
Osuka
,
J. Am. Chem. Soc.
128
,
4119
(
2006
).
37.
C. C.
Leznoff
,
H.
Lam
,
S. M.
Marcuccio
,
W. A.
Nevin
,
P.
Janda
,
N.
Kobayashi
, and
A. B. P.
Lever
,
J. Chem. Soc., Chem. Commun.
1987
,
699
.
38.
D.
Lelièvre
,
L.
Bosio
,
J.
Simon
,
J.-J.
André
, and
F.
Bensebaas
,
J. Am. Chem. Soc.
114
,
4475
(
1992
).
39.
D.
Lelièvre
,
O.
Damette
, and
J.
Simon
,
J. Chem. Soc. Chem. Commun.
1993
,
939
.
40.
N.
Kobayashi
,
H.
Lam
,
W. A.
Nevin
,
P.
Janda
,
C. C.
Leznoff
,
T.
Koyama
,
A.
Monden
, and
H.
Shirai
,
J. Am. Chem. Soc.
116
,
879
(
1994
).
41.
N.
Kobayashi
,
T.
Fukuda
, and
D.
Lelièvre
,
Inorg. Chem.
39
,
3632
(
2000
).
42.
M.
Calvete
and
M.
Hanack
,
Eur. J. Org. Chem.
2003
,
2080
.
43.
N.
Kobayashi
and
H.
Ogata
,
Eur. J. Inorg. Chem.
2004
,
906
.
44.
S.
Makarov
,
C.
Litwinski
,
E. A.
Ermilov
,
O.
Suvorova
,
B.
Röder
, and
D.
Wöhrle
,
Chem.-Eur. J.
12
,
1468
(
2006
).
45.
C.
Litwinski
,
I.
Corral
,
E. A.
Ermilov
,
S.
Tannert
,
D.
Fix
,
S.
Makarov
,
O.
Suvorova
,
L.
González
,
D.
Wöhrle
, and
Beate
Röder
,
J. Phys. Chem. B
112
,
8466
(
2008
).
46.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 09 Revision B.01, Gaussian Inc., Wallingford, CT,
2010
.
47.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
);
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
48.
R.
Ditchfield
,
W. J.
Hehre
, and
J. A.
Pople
,
J. Chem. Phys.
54
,
724
(
1971
);
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
);
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
);
M. M.
Francl
,
W. J.
Pietro
,
W. J.
Hehre
,
J. S.
Binkley
,
D. J.
DeFrees
,
J. A.
Pople
, and
M. S.
Gordon
,
J. Chem. Phys.
77
,
3654
(
1982
).
49.
E.
Cances
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
107
,
3032
(
1997
);
E.
Cances
and
B.
Mennucci
,
J. Math. Chem.
23
,
309
(
1998
);
B.
Mennucci
,
E.
Cances
, and
J.
Tomasi
,
J. Phys. Chem. B
101
,
10506
(
1997
).
50.
T. H.
Dunning
 Jr.
and
P. J.
Hay
, in
Modern Theoretical Chemistry
, edited by
H. F.
Schaefer
 III
(
Plenum
,
New York
,
1977
), Vol.
3
, pp.
1
27
.
51.
See supplementary materials at http://dx.doi.org/10.1063/1.3692964 for the results of H2Pc, dimensions and valence MOs of H4Pc2.
52.
H.
Nakatsuji
and
K.
Hirao
,
Int. J. Quantum Chem.
20
,
1301
(
1981
).
53.
T.
Nakajima
and
H.
Nakatsuji
,
Chem. Phys. Lett.
280
,
79
(
1997
).
54.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
);
[PubMed]
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
);
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
55.
T.
Yanai
,
D.
Tew
, and
N.
Handy
,
Chem. Phys. Lett.
393
,
51
(
2004
).
56.
M.
Kasha
,
H. R.
Rawls
, and
M.
Ashraf El-Bayoumi
,
Pure Appl. Chem.
11
,
371
(
1965
).
57.
L.
Edwards
and
M.
Gouterman
,
J. Mol. Spectrosc.
33
,
292
(
1970
).
58.
R.
Cammi
,
R.
Fukuda
,
M.
Ehara
, and
H.
Nakatsuji
,
J. Chem. Phys.
133
,
024104
(
2010
);
[PubMed]
R.
Fukuda
,
M.
Ehara
,
H.
Nakatsuji
, and
R.
Cammi
,
J. Chem. Phys.
134
,
104109
(
2011
).
[PubMed]

Supplementary Material

You do not currently have access to this content.