Dynamical mean-field theory (DMFT) has established itself as a reliable and well-controlled approximation to study correlation effects in bulk solids and also two-dimensional systems. In combination with standard density-functional theory (DFT), it has been successfully applied to study materials in which localized electronic states play an important role. It was recently shown that this approach can also be successfully applied to study correlation effects in nanostructures. Here, we provide some details on our recently proposed DFT+DMFT approach to study the magnetic properties of nanosystems [V. Turkowski, A. Kabir, N. Nayyar, and T. S. Rahman, J. Phys.: Condens. Matter22, 462202 (2010)] and apply it to examine the magnetic properties of small FePt clusters. We demonstrate that DMFT produces meaningful results even for such small systems. For benchmarking and better comparison with results obtained using DFT+U, we also include the case of small Fe clusters. As in the case of bulk systems, the latter approach tends to overestimate correlation effects in nanostructures. Finally, we discuss possible ways to further improve the nano-DFT+DMFT approximation and to extend its application to molecules and nanoparticles on substrates and to nonequilibrium phenomena.

1.
V.
Turkowski
,
A.
Kabir
,
N.
Nayyar
, and
T. S.
Rahman
,
J. Phys.: Condens. Matter
22
,
462202
(
2010
).
2.
V. I.
Anisimov
,
J.
Zaanen
, and
O. K.
Andersen
,
Phys. Rev. B
44
,
943
(
1991
).
3.
V. I.
Anisimov
,
F.
Aryasetiawan
, and
A. I.
Lichtenstein
,
J. Phys.: Condens. Matter
9
,
767
(
1997
).
4.
G.
Kotliar
,
S. Y.
Savrasov
,
K.
Haule
,
V. S.
Oudovenko
,
O.
Parcollet
, and
C. A.
Marianetti
,
Rev. Mod. Phys.
78
,
865
(
2006
).
5.
A. M.
Tsvelick
and
P. W.
Wiegmann
,
Adv. Phys.
32
,
453
(
1983
).
6.
W.
Metzner
and
D.
Vollhardt
,
Phys. Rev. Lett.
62
,
324
(
1989
).
7.
A.
Georges
,
G.
Kotliar
,
W.
Krauth
, and
M. J.
Rozenberg
,
Rev. Mod. Phys.
68
,
13
(
1996
).
8.
J. K.
Freericks
,
M.
Jarrell
, and
D. J.
Scalapino
,
Phys. Rev. B
48
,
6302
(
1993
).
9.
M.
Potthoff
and
W.
Nolting
,
Phys. Rev. B
60
,
7834
(
1999
).
10.
M.
Potthoff
,
Eur. J. Phys. B
32
,
429
(
2003
).
11.
J. K.
Freericks
,
Transport in Multilayered Nanostructures: The Dynamical Mean-Field Theory Approach
(
Imperial College Press
,
London
,
2006
).
12.
J. K.
Freericks
,
V. M.
Turkowski
, and
V.
Zlatic
,
Phys. Rev. Lett.
97
,
266408
(
2006
).
13.
V. I.
Anisimov
,
A. I.
Poteryaev
,
M. A.
Korotin
,
A. O.
Anokhin
, and
G.
Kotliar
,
J. Phys.: Condens. Matter
9
,
7359
(
1997
).
14.
A. I.
Lichtenstein
and
M. I.
Katsnelson
,
Phys. Rev. B
57
,
6884
(
1998
).
15.
K.
Held
,
I. A.
Nekrasov
,
G.
Keller
,
V.
Eyert
,
N.
Blmer
,
A. K.
McMahan
,
R. T.
Scalettar
,
T.
Pruschke
,
V. I.
Anisimov
, and
D.
Vollhardt
,
Phys. Status Solidi B
243
,
2599
(
2006
).
16.
17.
D. W.
Boukhvalov
,
L. I.
Vergara
,
V. V.
Dobrovitski
,
M. I.
Katsnelson
,
A. I.
Lichtenstein
,
P.
Koegerler
,
J. L.
Musfeldt
, and
B. N.
Harmon
,
Phys. Rev. B
77
,
180402
(
2008
).
18.
A.
Valli
,
G.
Sangiovanni
,
O.
Gunnarsson
,
A.
Toschi
, and
K.
Held
,
Phys. Rev. Lett.
104
,
246402
(
2010
).
19.
D.
Jacob
,
K.
Haule
, and
G.
Kotliar
,
Phys. Rev. B
82
,
195115
(
2010
).
20.
N.
Lin
,
C. A.
Marianetti
,
A. J.
Millis
, and
D. R.
Reichman
,
Phys. Rev. Lett.
106
,
096402
(
2011
).
21.
D.
Zgid
and
G. K.-L.
Chan
,
J. Chem. Phys.
134
,
094115
(
2011
).
22.
V. M.
Turkowski
and
J. K.
Freericks
,
Phys. Rev. B
73
,
075108
(
2006
);
V. M.
Turkowski
and
J. K.
Freericks
,
Phys. Rev. B
73
,
209902
(
2006
) (erratum).
23.
V.
Turkowski
and
J. K.
Freericks
,
Phys. Rev. B
77
,
205102
(
2008
);
V.
Turkowski
and
J. K.
Freericks
,
Phys. Rev. B
82
,
119904
(
2010
) (erratum).
24.
J. K.
Freericks
and
V.
Turkowski
,
Phys. Rev. B
80
,
115119
(
2009
);
J. K.
Freericks
and
V.
Turkowski
,
Phys. Rev. B
82
,
129902
(
2010
) (erratum).
25.
P.
Hansmann
,
R.
Arita
,
A.
Toschi
,
S.
Sakai
,
G.
Sangiovanni
, and
K.
Held
,
Phys. Rev. Lett.
104
,
197002
(
2010
).
26.
A. G.
Petukhov
,
I. I.
Mazin
,
L.
Chioncel
, and
A. I.
Lichtenstein
,
Phys. Rev B
67
,
153106
(
2003
).
27.
E. R.
Ylvisaker
,
W. E.
Pickett
, and
K.
Koepernik
,
Phys. Rev. B
79
,
035103
(
2009
).
28.
C. H.
Yee
,
G.
Kotliar
, and
K.
Haule
,
Phys. Rev. B
81
,
035105
(
2010
).
29.
J. E.
Hirsch
and
R. M.
Fye
,
Phys. Rev. Lett.
56
,
2521
(
1986
).
30.
G.
Kresse
and
J.
Hafner
, Computer Code VASP Guide, University of Vienna, Vienna, Austria,
2003
.
31.
P. A.
Montano
,
Solid State Commun.
35
,
53
(
1980
).
32.
H.
Purdum
,
P. A.
Montano
,
G. K.
Shenoy
, and
T.
Morrison
,
Phys. Rev. B
25
,
4412
(
1982
).
33.
J. C.
Slater
and
G. F.
Koster
,
Phys. Rev.
94
,
1498
(
1954
).
34.
W. A.
Harrison
,
Elementary Electronic Structure
(
World Scientific
,
Singapore
,
2004
).
35.
J. A.
Alonso
,
Structure and Properties of Atomic Nanoclusters
(
Imperial College Press
,
London
,
2005
).
36.
G.
Rollmann
and
P.
Entel
, in
Lecture Series on Computer and Computational Sciences
, Vol. 5, edited by
G.
Maroulis
(
Brill Academic
,
Leiden, The Netherlands
,
2006
), p.
145
.
37.
G.
Rollmann
,
H. C.
Herper
, and
P.
Entel
,
J. Phys. Chem. A
110
,
10799
(
2006
).
38.
G.
Kim
,
Y.
Park
,
M. J.
Han
,
J.
Yu
,
C.
Heo
, and
Y. H.
Lee
,
Solid State Commun.
149
,
2058
(
2009
).
39.
D. M.
Cox
,
D. J.
Trevor
,
R. L.
Whetten
,
E. A.
Rohlfing
, and
A.
Kaldor
,
Phys. Rev. B
32
,
7290
(
1985
).
40.
M.
Castro
,
C.
Jamorski
, and
D. R.
Salahub
,
Chem. Phys. Lett.
271
,
133
(
1997
).
41.
T.
Oda
,
A.
Pasquarello
, and
R.
Carr
,
Phys. Rev. Lett.
80
,
3622
(
1998
).
42.
Z.
Sljivancanin
and
A.
Pasquarello
,
Phys. Rev. Lett.
90
,
247202
(
2003
).
43.
G.
Rollmann
,
P.
Entel
, and
S.
Sahoo
,
Comput. Mater. Sci.
35
,
275
(
2006
).
44.
H.
Ebert
,
S.
Bornemann
,
J.
Minar
,
P. H.
Dederichs
,
R.
Zeller
, and
I.
Cabria
,
Comput. Mater. Sci.
35
,
279
(
2006
).
45.
K.
Boufala
,
L.
Fernandez-Seivane
,
J.
Ferret
, and
M.
Sarah
,
J. Man. Man. Mater.
322
,
3428
(
2010
).
You do not currently have access to this content.