We model the coherent energy transfer of an electronic excitation within covalently linked aromatic homodimers from first-principles. Our results shed light on whether commonly used models of the bath calculated via detailed electronic structure calculations can reproduce the key dynamics. For the systems we model, the time scales of coherent transport are experimentally known from time-dependent polarization anisotropy measurements, and so we can directly assess whether current techniques are predictive for modeling coherent transport. The coupling of the electronic degrees of freedom to the nuclear degrees of freedom is calculated from first-principles rather than assumed, and the fluorescence anisotropy decay is directly reproduced. Surprisingly, we find that although time-dependent density functional theory absolute energies are routinely in error by orders of magnitude more than the coupling energy between monomers, the coherent transport properties of these dimers can be semi-quantitatively reproduced from these calculations. Future directions which must be pursued to yield predictive and reliable models of coherent transport are suggested.

1.
J. M.
Dawlaty
,
D. I. G.
Bennett
,
V. M.
Huxter
, and
G. R.
Fleming
,
J. Chem. Phys.
135
,
044201
(
2011
).
2.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234110
(
2009
).
3.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
4.
J.
Zhu
,
S.
Kais
,
P.
Rebentrost
, and
A.
Aspuru-Guzik
,
J. Phys. Chem. B
115
,
1531
(
2011
).
5.
G.
Ritschel
,
J.
Roden
,
W. T.
Strunz
, and
A.
Eisfeld
,
New J. Phys.
13
,
113034
(
2011
).
7.
W. J. D.
Beenken
and
T.
Pullerits
,
J. Chem. Phys.
120
,
2490
(
2004
).
8.
C.-P.
Hsu
,
Acc. Chem. Res.
42
,
509
(
2009
).
9.
J.
Guthmuller
,
F.
Zutterman
, and
B.
Champagne
,
J. Chem. Phys.
131
,
154302
(
2009
).
10.
11.
A.
Munoz-Losa
,
C.
Curutchet
,
I. F.
Galvan
, and
B.
Mennucci
,
J. Chem. Phys.
129
,
034104
(
2008
).
12.
E.
Sagvolden
,
F.
Furche
, and
A.
Köhn
,
J. Chem. Theory Comput.
5
,
873
(
2009
).
13.
M. J. G.
Peach
,
P.
Benfield
,
T.
Helgaker
, and
D. J.
Tozer
,
J. Chem. Phys
128
,
044118
(
2008
).
14.
M.
Schreiber
,
M. R.
Silva-Junior
,
S. P. A.
Sauer
, and
W.
Thiel
,
J. Chem. Phys.
128
,
134110
(
2008
).
15.
I.
Yamazaki
,
N.
Aratani
,
S.
Akimoto
,
T.
Yamazaki
, and
A.
Osuka
,
J. Am. Chem. Soc.
125
,
7192
(
2003
).
16.
F.
Zhu
,
C.
Galli
, and
R.
Hochstrasser
,
J. Chem. Phys.
98
,
1042
(
1993
).
17.
R.
Kishi
,
M.
Nakano
,
T.
Minami
,
H.
Fukui
,
H.
Nagai
,
K.
Yoneda
, and
H.
Takahashi
,
J. Phys. Chem. A
113
,
5455
(
2009
).
18.
A.
Matro
and
J.
Cina
,
J. Phys. Chem.
99
,
2568
(
1995
).
19.
J. D.
Biggs
and
J. A.
Cina
,
J. Chem. Phys.
131
,
224302
(
2009
).
20.
L.
Yang
,
S.
Caprasecca
,
B.
Mennucci
, and
S.
Jang
,
J. Am. Chem. Soc.
132
,
16911
(
2010
).
21.
S.
Jang
,
Y.-C.
Cheng
,
D. R.
Reichman
, and
J. D.
Eaves
,
J. Chem. Phys.
129
,
101104
(
2008
).
22.
S.
Jang
,
J. Chem. Phys.
135
,
034105
(
2011
).
23.
A. G.
Redfield
,
IBM J. Res. Dev.
1
,
19
(
1957
).
24.
A. G.
Redfield
, in
Advances in Magnetic Resonance
, edited by
J. S.
Waugh
(
Academic Press
,
New York
,
1965
), Vol.
1
, p.
1
.
25.
P.
Kjellberg
and
T.
Pullerits
,
J. Chem. Phys.
124
,
024106
(
2006
).
26.
D. S.
Kilin
and
D. A.
Micha
,
J. Phys. Chem. Lett.
1
,
1073
(
2010
).
27.
D. S.
Kilin
and
D. A.
Micha
,
J. Phys. Chem. C
115
,
770
(
2011
).
28.
J. E.
Subotnik
,
R. J.
Cave
,
R. P.
Steele
, and
N.
Shenvi
,
J. Chem. Phys.
130
,
234102
(
2009
).
29.
J.
Vura-Weis
,
M. D.
Newton
,
M. R.
Wasielewski
, and
J. E.
Subotnik
,
J. Phys. Chem. C
114
,
20449
(
2010
).
30.
S. S.
Iyengar
and
J.
Jakowski
,
J. Chem. Phys
122
,
114105
(
2005
).
31.
C. T.
Chapman
,
W.
Liang
, and
X.
Li
,
J. Chem. Phys.
134
,
024118
(
2011
).
32.
J. C.
Tully
and
R. K.
Preston
,
J. Chem. Phys.
55
,
562
(
1971
).
33.
C. F.
Craig
,
W. R.
Duncan
, and
O. V.
Prezhdo
,
Phys. Rev. Lett.
95
,
163001
(
2005
).
34.
R.
Mitric
,
J.
Petersen
, and
V.
Bonacic-Koutecky
,
Phys. Rev. A
79
,
053416
(
2009
).
35.
X.
Li
,
J. C.
Tully
,
H. B.
Schlegel
, and
M. J.
Frisch
,
J. Chem. Phys.
123
,
084106
(
2005
).
36.
H.
Kamisaka
,
S. V.
Kilina
,
K.
Yamashita
, and
O. V.
Prezhdo
,
Nano Lett.
6
,
2295
(
2006
).
37.
C. J.
Margulis
and
D. F.
Coker
,
J. Chem. Phys.
110
,
5677
(
1999
).
38.
G.
Tao
and
W. H.
Miller
,
J. Phys. Chem. Lett.
1
,
891
(
2010
).
39.
M.
Ceotto
,
S.
Atahan
,
G. F.
Tantardini
, and
A.
Aspuru-Guzik
,
J. Chem. Phys
130
,
234113
(
2009
).
40.
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
41.
A.
Ishizaki
and
Y.
Tanimura
,
J. Chem. Phys.
123
,
014503
(
2005
).
42.
Q.
Shi
,
L.
Chen
,
G.
Nan
,
R.-X.
Xu
, and
Y.
Yan
,
J. Chem. Phys
130
,
084105
(
2009
).
43.
C.
Meier
and
D. J.
Tannor
,
J. Chem. Phys.
111
,
3365
(
1999
).
44.
Atomic units are used in all equations of this paper.
46.
U.
Kleinekathofer
,
J. Chem. Phys.
121
,
2505
(
2004
).
47.
M.
Schröder
,
U.
Kleinekathöfer
, and
M.
Schreiber
,
J. Chem. Phys.
124
,
084903
(
2006
).
48.
W.
Liang
,
C. T.
Chapman
, and
X.
Li
,
J. Chem. Phys.
134
,
184102
(
2011
).
49.
T.
Akama
and
H.
Nakai
,
J. Chem. Phys.
132
,
054104
(
2010
).
50.
S.
Hirata
and
M.
Head-Gordon
,
Chem. Phys. Lett.
314
,
291
(
1999
).
51.
Y.
Shao
,
L.
Fusti-Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Oschsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
DiStasio
 Jr.
,
R. C.
Lochan
,
T.
Want
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T. V.
Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F.C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock
 III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
 III
,
J.
Kong
,
A. I.
Krylov
,
P. M.W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
52.
D. L.
Yeager
,
M. A. C.
Nascimento
, and
V.
McKoy
,
Phys. Rev. A
11
,
1168
(
1975
).
53.
A. S.
Leathers
and
D. A.
Micha
,
J. Phys. Chem. A
110
,
749
(
2006
).
54.
D. A.
Micha
,
J. Phys. Chem. A
103
,
7562
(
1999
).
55.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
56.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
57.
F.
Weigend
,
Phys. Chem. Chem. Phys.
8
,
1057
(
2006
).
58.
F.
Neese
,
ORCA – an ab initio, density functional and semiempirical program package, Version 2.6
University of Bonn
,
2008
.
59.
F.
Neese
,
F.
Wennmohs
,
A.
Hansen
, and
U.
Becker
,
Chem. Phys.
356
,
98
(
2009
).
60.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford University Press
,
New York
,
1998
).
61.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
62.
T.
Petrenko
and
F.
Neese
,
J. Chem. Phys.
127
,
4319
(
2007
).
63.
I.
Kondov
,
H.
Wang
, and
M.
Thoss
,
Int. J. Quantum Chem.
106
,
1291
(
2006
).
64.
N.
Gottfried
and
W.
Kaiser
,
Chem. Phys. Lett.
101
,
331
(
1983
).
65.
V.
May
and
O.
Kuhn
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
Wiley-VCH
,
Berlin
,
2004
).
66.
Z.
Deng
and
S.
Mukamel
,
Phys. Rev. A
29
,
1914
(
1984
).
67.
R.
Zare
,
Angular Momentum
(
Wiley-Interscience
,
New York
,
1988
).
68.
E. H.
van Kleef
,
Am. J. Phys.
63
,
626
(
1995
).
69.
J.-D.
Chai
and
M.
Head-Gordon
,
J. Chem. Phys.
128
,
084106
(
2008
).
70.
S.
Zilberg
,
Y.
Haas
, and
S.
Shaik
,
J. Phys. Chem.
99
,
16558
(
1995
).
71.
M.
Head-Gordon
,
M.
Oumi
, and
D.
Maurice
,
Mol. Phys.
96
,
593
(
1999
).
72.
Y. M.
Rhee
,
D.
Casanova
, and
M.
Head-Gordon
,
J. Phys. Chem. A
113
,
10564
(
2009
).
73.
L.
Goerigk
and
S.
Grimme
,
ChemPhysChem
9
,
2467
(
2008
).
74.
G. D.
Scholes
,
K. P.
Ghiggino
,
A. M.
Oliver
, and
M. N.
Paddon-Row
,
J. Am. Chem. Soc.
115
,
4345
(
1993
).
75.
M.
Madjet
,
A.
Abdurahman
, and
T.
Renger
,
J. Phys. Chem. B
110
,
17268
(
2006
).
76.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
77.
W.
Liu
,
V.
Settels
,
P. H.P.
Harbach
,
A.
Dreuw
,
R. F.
Fink
, and
B.
Engels
,
J. Comput. Chem.
32
,
1971
(
2011
).
78.
R.
Valero
,
D. G.
Truhlar
, and
A. W.
Jasper
,
J. Phys. Chem. A
112
,
5756
(
2008
).
79.
R. P.
Feynman
and
F. L.
Vernon
,
Ann. Phys.
24
,
118
(
1963
).
80.
W. J.D.
Beenken
,
M.
Dahlbom
,
P.
Kjellberg
, and
T.
Pullerits
,
J. Chem. Phys.
117
,
5810
(
2002
).
81.
T.
Pacher
,
L. S.
Cederbaum
, and
H.
Köppel
,
Adiabatic and Quasidiabatic States in a Gauge Theoretical Framework
,
Advances in Chemical Physics
(
Wiley
,
New York
,
2007
). pp.
293
391
82.
I.
Yamazaki
,
S.
Akimoto
,
T.
Yamazaki
,
S.
Sato
, and
Y.
Sakata
,
J. Phys. Chem. A
106
,
2122
(
2002
).
83.
P.
Huo
and
D. F.
Coker
,
J. Chem. Phys.
133
,
184108
(
2010
).
You do not currently have access to this content.