Vibrational cooling rate of the first excited singlet (S1) state of trans-stilbene and bulk thermal diffusivity are measured for seven room temperature ionic liquids, C2mimTf2N, C4mimTf2N, C4mimPF6, C5mimTf2N, C6mimTf2N, C8mimTf2N, and bmpyTf2N. Vibrational cooling rate measured with picosecond time-resolved Raman spectroscopy reflects solute-solvent and solvent-solvent energy transfer in a microscopic solvent environment. Thermal diffusivity measured with the transient grating method indicates macroscopic heat conduction capability. Vibrational cooling rate of S1trans-stilbene is known to have a good correlation with bulk thermal diffusivity in ordinary molecular liquids. In the seven ionic liquids studied, however, vibrational cooling rate shows no correlation with thermal diffusivity; the observed rates are similar (0.082 to 0.12 ps−1 in the seven ionic liquids and 0.08 to 0.14 ps−1 in molecular liquids) despite large differences in thermal diffusivity (5.4–7.5 × 10−8 m2 s−1 in ionic liquids and 8.0–10 × 10−8 m2 s−1 in molecular liquids). This finding is consistent with our working hypothesis that there are local structures characteristically formed in ionic liquids. Vibrational cooling rate is determined by energy transfer among solvent ions in a local structure, while macroscopic thermal diffusion is controlled by heat transfer over boundaries of local structures. By using “local” thermal diffusivity, we are able to simulate the vibrational cooling kinetics observed in ionic liquids with a model assuming thermal diffusion in continuous media. The lower limit of the size of local structure is estimated with vibrational cooling process observed with and without the excess energy. A quantitative discussion with a numerical simulation shows that the diameter of local structure is larger than 10 nm. If we combine this lower limit, 10 nm, with the upper limit, 100 nm, which is estimated from the transparency (no light scattering) of ionic liquids, an order of magnitude estimate of local structure is obtained as 10 nm < L < 100 nm, where L is the length or the diameter of the domain of local structure.

1.
K.
Iwata
,
H.
Okajima
,
S.
Saha
, and
H.
Hamaguchi
,
Acc. Chem. Res.
40
,
1174
(
2007
).
2.
A.
Triolo
,
O.
Russina
,
H.-J.
Bleif
, and
E. D.
Cola
,
J. Phys. Chem. B
111
,
4641
(
2007
).
3.
S.
Saha
,
S.
Hayashi
,
A.
Kobayashi
, and
H.
Hamaguchi
,
Chem. Lett.
32
,
740
(
2003
).
4.
H.
Katayanagi
,
S.
Hayashi
,
H.
Hamaguchi
, and
K.
Nishikawa
,
Chem. Phys. Lett.
392
,
460
(
2004
).
5.
6.
A.
Triolo
,
O.
Russina
,
C.
Hardacre
,
M.
Nieuwenhuyzen
,
M. A.
Gonzalez
, and
H.
Grimm
,
J. Phys. Chem. B
109
,
22061
(
2005
).
7.
Y.
Inamura
,
O.
Yamamuro
,
S.
Hayashi
, and
H.
Hamaguchi
,
Physica B
385–386
,
732
(
2006
).
8.
U.
Schroder
,
J.
Wadhawan
,
R. G.
Compton
,
F.
Marken
,
P. A. Z.
Suarez
,
C. S.
Consorti
,
R. F.
de Souza
, and
J.
Dupont
,
New J. Chem.
24
,
1009
(
2000
).
9.
H.
Tokuda
,
K.
Hayamizu
,
K.
Ishii
,
M. A. B. H.
Susan
, and
M.
Watanabe
,
J. Phys. Chem. B
108
,
16593
(
2004
).
10.
M.
Fukuda
,
M.
Terazima
, and
Y.
Kimura
,
J. Chem. Phys.
128
,
114508
(
2008
).
11.
Y.
Wang
and
G. A.
Voth
,
J. Am. Chem. Soc.
127
,
12192
(
2005
).
12.
J. N. A. C.
Lopes
and
A. A. H.
Padua
,
J. Phys. Chem. B
110
,
3330
(
2006
).
13.
M. G. D.
Popolo
and
G. A.
Voth
,
J. Phys. Chem. B
108
,
1744
(
2004
).
14.
Y.
Wang
and
G. A.
Voth
,
J. Phys. Chem. B
110
,
18601
(
2005
).
15.
Z.
Hu
and
C. J.
Margulis
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
831
(
2006
).
16.
R.
Ozawa
and
H.
Hamaguchi
,
Chem. Lett.
30
,
736
(
2001
).
17.
C.
Frez
,
G. J.
Diebold
,
C. D.
Tran
, and
S.
Yu
,
J. Chem. Eng. Data
51
,
1250
(
2006
).
18.
K.
Iwata
and
H.
Hamaguchi
,
J. Phys. Chem. A
101
,
632
(
1997
).
19.
R. E.
Hester
,
P.
Matousek
,
J. N.
Moore
,
A. W.
Parker
,
W. T.
Toner
, and
M.
Towrie
,
Chem. Phys. Lett.
208
,
471
(
1993
).
20.
K.
Iwata
,
K.
Yoshida
,
Y.
Takada
, and
H.
Hamaguchi
,
Chem. Lett.
36
,
504
(
2007
).
21.
K.
Iwata
,
J. Raman Spectrosc.
39
,
1512
(
2008
).
22.
K.
Yoshida
, Ph.D. thesis,
The University of Tokyo
,
2012
.
23.
P.
Bonhôte
,
A.-P.
Dias
,
N.
Papageorgiou
,
K.
Kalyanasundaram
, and
M.
Grätzel
,
Inorg. Chem.
35
,
1168
(
1996
).
24.
Y.
Nishiyama
,
M.
Fukuda
,
M.
Terazima
, and
Y.
Kimura
,
J. Chem. Phys.
128
,
164514
(
2008
).
25.
H.
Hamaguchi
and
K.
Iwata
,
Bull. Chem. Soc. Jpn.
75
,
883
(
2002
).
26.
H.
Hamaguchi
,
C.
Kato
, and
M.
Tasumi
,
Chem. Phys. Lett.
100
,
3
(
1983
).
27.
T. L.
Gustafson
,
D. M.
Roberts
, and
D. A.
Chemoff
,
J. Chem. Phys.
79
,
1559
(
1983
).
28.
H. S.
Carslaw
and
J. C.
Jaeger
,
Conduction of Heat in Solids
, 2nd ed. (
Oxford University Press
,
Oxford
,
1959
).
29.
J.
Crank
,
The Mathematics of Diffusion
, 2nd ed. (
Oxford University Press
,
Oxford
,
1975
).
30.
K.
Iwata
,
Bull. Chem. Soc. Jpn.
75
,
1075
(
2002
).
31.
R.
Ozawa
and
H.
Hamaguchi
,
Chem. Lett.
30
,
736
(
2001
).
32.
K.
Iwata
,
M.
Kakita
, and
H.
Hamaguchi
,
J. Phys. Chem. B
111
,
4914
(
2007
).
33.
M.
Fukuda
,
O.
Kajimoto
,
M.
Terazima
, and
Y.
Kimura
,
J. Mol. Liq.
134
,
49
(
2007
).
34.
H.
Hamaguchi
and
R.
Ozawa
,
Adv. Chem. Phys.
131
,
85
(
2005
).
You do not currently have access to this content.