Nitrogen doping of a carbon nanoribbon is profoundly affected by its one-dimensional character, symmetry, and interaction with edge states. Using state-of-the-art ab initiocalculations, including hybrid exact-exchange density functional theory, we find that, for N-doped zigzag ribbons, the electronic properties are strongly dependent upon sublattice effects due to the non-equivalence of the two sublattices. For armchair ribbons, N-doping effects are different depending upon the ribbon family: for families 2 and 0, the N-induced levels are in the conduction band, while for family 1 the N levels are in the gap. In zigzag nanoribbons, nitrogen close to the edge is a deep center, while in armchair nanoribbons its behavior is close to an effective-mass-like donor with the ionization energy dependent on the value of the band gap. In chiral nanoribbons, we find strong dependence of the impurity level and formation energy upon the edge position of the dopant, while such site-specificity is not manifested in the magnitude of the magnetization.

1.
A. K.
Geim
and
K. S.
Novoselov
,
Nat. Mater.
6
,
183
(
2007
).
2.
X.
Li
,
X.
Wang
,
L.
Zhang
,
S.
Lee
, and
H.
Dai
,
Science
319
,
1229
(
2008
).
3.
X.
Wang
,
Y.
Ouyang
,
X.
Li
,
H.
Wand
,
J.
Guo
, and
H.
Dai
,
Phys. Rev. Lett.
100
,
206803
(
2008
).
4.
Y. W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
,
Phys. Rev. Lett.
97
,
216803
(
2006
).
5.
V.
Barone
,
O.
Hod
, and
G. E.
Scuseria
,
Nano Lett.
6
,
2748
(
2006
).
6.
C. T.
White
,
J.
Li
,
D.
Gunlycke
, and
J. W.
Mintmire
,
Nano Lett.
6
,
825
(
2007
).
7.
M.
Fujita
,
K.
Wakabayashi
,
K.
Nakata
, and
K.
Kusakabe
,
J. Phys. Soc. Jpn.
65
,
1920
(
1996
).
8.
O.
Volnianska
and
P.
Boguslawski
,
J. Phys.: Condens. Matter
22
,
073202
(
2010
).
9.
M.
Terrones
,
A.
Jorio
,
M.
Endo
,
A. M.
Rao
,
Y. A.
Kim
,
T.
Hayashi
,
H.
Terrones
,
J.-C.
Charlier
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Mater. Today
7
,
30
(
2004
).
10.
M.
Terrones
,
A. G. S.
Filho
, and
A. M.
Rao
,
Carbon Nanotubes
111
,
531
(
2008
).
11.
X.
Wang
,
X.
Li
,
L.
Zhang
,
Y.
Yoon
,
P. K.
Weber
,
H.
Wang
,
J.
Guo
, and
H.
Dai
,
Science
324
,
768
(
2009
).
12.
L. S.
Panchakarla
,
K. S.
Subrahmanyam
,
S. K.
Saha
,
A.
Govindaraj
,
H. R.
Krishnamurthy
,
U. V.
Waghmare
, and
C. N. R.
Rao
,
Adv. Mater.
21
,
4726
(
2009
).
13.
B.
Biel
,
X.
Blase
,
F.
Triozon
, and
S.
Roche
,
Phys. Rev. Lett.
102
,
096803
(
2009
).
14.
X. H.
Zheng
,
I.
Rungger
,
Z.
Zeng
, and
S.
Sanvito
,
Phys. Rev. B
80
,
235426
(
2009
).
15.
E.
Cruz-Silva
,
Z. M.
Barnett
,
B. G.
Sumpter
, and
V.
Meunier
,
Phys. Rev. B
83
,
155445
(
2011
).
16.
P.
Ayala
,
A.
Gruneis
,
T.
Gemming
,
D.
Grimm
,
C.
Kramberger
,
M. H.
Rummeli
,
J. Fernando L.
Freire
,
H.
Kuzmany
,
R.
Pfeiffer
,
A.
Barreiro
,
B.
Bu1chner
, and
T.
Pichler
,
J. Phys. Chem. C
111
,
2879
(
2007
).
17.
S.
Yu
,
W.
Zheng
,
Q.
Wen
, and
Q.
Jiang
,
Carbon
46
,
537
(
2008
).
18.
Y.
Li
,
Z.
Zhou
,
P.
Shen
, and
Z.
Chen
,
ACS Nano
3
,
1952
(
2009
).
19.
S. F.
Huang
,
K.
Terakura
,
T.
Ozaki
,
T.
Ikeda
,
M.
Boero
,
J. O. M.
Oshima
, and
S.
Miyata
,
Phys. Rev. B
80
,
235410
(
2009
).
20.
O. V.
Yazyev
,
Rep. Prog. Phys.
73
,
056501
(
2010
).
21.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys.: Conden. Matter
21
,
395502
(
2009
).
22.
J.
Jiang
,
W.
Lu
, and
J.
Bernholc
,
Phys. Rev. Lett.
101
,
246803
(
2008
).
23.
P. C.
Zalm
,
G. F.
van de Walle
,
D. J.
Gravesteijin
, and
A. A.
van Gorkum
,
Appl. Phys. Lett.
55
,
2520
(
1989
).
24.
P.
Boguslawski
and
J.
Bernholc
,
Phys. Rev. Lett.
88
,
166101
(
2002
).
25.
J.
March
,
Advanced Organic Chemistry
, 2nd ed. (
McGraw-Hill
,
New York
,
1977
).
26.
S. A.
Kajihara
,
A.
Antonelli
,
J.
Bernholc
, and
R.
Car
,
Phys. Rev. Lett.
66
,
2010
(
1991
), see http://link.aps.org/doi/10.1103/PhysRevLett.66.2010.
27.
L.
Brey
and
H. A.
Fertig
,
Phys. Rev. B
73
,
235411
(
2006
).
28.
L.
Yang
,
C.-H.
Park
,
S.
Young-Woo
,
M. L.
Cohen
, and
S. G.
Louie
,
Rev. Rev. Lett.
99
,
186801
(
2007
).
29.
H.-P.
Komsa
,
P.
Broqvist
, and
A.
Pasquarello
,
Phys. Rev. B
81
,
205118
(
2010
).
30.
In order to obtain reliable PBE0 estimates for defect level offsets from the frontier energy levels while employing few k-points, this property is inferred from calculations of a charged supercell containing one hole, to preclude dealing with odd-integer electron numbers.
31.
C.
Tao
,
L.
Jiao
,
O. V.
Yazyev
,
Y. C.
Chen
,
J.
Feng
,
X.
Zhang
,
R. B.
Capaz
,
J. M.
Tour
,
A.
Zettle
,
S. G.
Louie
,
H.
Dai
, and
M. F.
Crommie
,
Nat. Phys.
7
,
616
(
2011
).
32.
L.
Sun
,
P.
Wei
,
J.
Wei
,
S.
Sanvito
, and
S.
Hou
,
J. Phys: Condens. Matter
23
,
425301
(
2011
).
33.
V.
Yazyev
,
R.
Capaz
, and
S.
Louie
,
Phys. Rev. B
84
,
115406
(
2011
).
You do not currently have access to this content.