The material formed by depositing C2 anions onto/into thin C60 films (on graphite) at room temperature has been studied by means of thermal desorption mass spectroscopy, ultraviolet photoionization spectroscopy, atomic force microscopy (AFM), and surface enhanced Raman spectroscopy. As-prepared, C2/C60 films manifest thermal desorption behaviour which differs significantly from pure C60 films. Whereas the latter can be fully sublimed, we observe decomposition of C2/C60 films to a high-temperature-stable material while predominantly C60, C62, and C64 are desorbed in parallel. Deposition of C2 also leads to significantly modified electronic and vibrational properties. Based on DFT model calculations of the Raman spectra, we suggest that as-prepared C2/C60 films contain appreciable amounts of polymeric networks comprising –C2–C60–C2–C60– chains. Detection of sublimed C62 and C64 upon heating implies that thermal decomposition of C2/C60 films involves addition/uptake of C2 units into individual fullerene cages. Correspondingly, annealing films up to various intermediate temperatures results in significant modifications to valence-band UP spectra as well as to surface topographies as imaged by AFM. The novel carbonaceous material obtained by heating to T > 950 K has a finite density of states at the Fermi level in contrast to as-prepared C2/C60. It comprises fused fullerene cages.

1.
S. D.
Khan
and
S.
Ahmad
,
Nanotechnology
17
,
4654
(
2006
);
[PubMed]
A.
Hussien
,
A. V.
Yakubovich
,
A. V.
Solov'yov
, and
W.
Greiner
,
Eur. Phys. J. D
57
,
207
(
2010
);
M.
Endo
and
H. W.
Kroto
,
J. Phys. Chem.
96
,
6941
(
1992
);
M.
Yoshida
and
E.
Osawa
,
Bull. Chem. Soc. Jpn.
68
,
2083
(
1995
);
E.
Osawa
,
M.
Yoshida
,
H.
Ueno
,
S.
Sage
, and
E.
Yoshida
,
Fullerene Sci. Technol.
7
,
239
(
1999
);
J. Y.
Yi
and
J.
Bernholc
,
Phys. Rev. B
48
,
5724
(
1993
).
2.
F.
Calvo
,
S.
Dı´az-Tendero
, and
M.-A.
Lebeaulta
,
Phys. Chem. Chem. Phys.
11
,
6345
(
2009
);
[PubMed]
W. C.
Eckhoff
and
G. E.
Scuseria
,
Chem. Phys. Lett.
216
,
399
(
1993
);
D.
Hathiramani
,
K.
Aichele
,
W.
Arnold
,
K.
Huber
,
E.
Salzborn
, and
P.
Scheier
,
Phys. Rev. Lett.
85
,
3604
(
2000
);
[PubMed]
B.
Climen
,
B.
Concina
,
M. A.
Lebeault
,
F.
Lépine
,
B.
Baguenard
, and
C.
Bordas
,
Chem. Phys. Lett.
437
,
17
(
2007
).
3.
A. R.
Sabirov
,
I. V.
Stankevich
, and
L. A.
Chernozatonskii
,
JETP Lett.
79
,
121
(
2004
).
4.
S. V.
Lisenkov
,
L. A.
Chernozatonski
, and
I. V.
Stankevich
,
Phys. Solid State
46
2317
(
2004
).
5.
M.
Pellarin
,
E.
Cottancin
,
J.
Lermé
,
J. L.
Vialle
,
M.
Broyer
,
F.
Tournus
,
B.
Masenelli
, and
P.
Mélinon
,
J. Chem. Phys.
117
,
3088
(
2002
);
M.
Pellarin
,
C.
Ray
,
J.
Lermé
,
J. L.
Vialle
,
M.
Broyer
, and
P.
Mélinon
,
J. Chem. Phys.
112
,
8436
(
2000
).
6.
S. W.
McElvany
,
M. M.
Ross
, and
J. H.
Callahan
,
Acc. Chem. Res.
25
,
162
(
1992
);
G.
Ulmer
,
E. E. B.
Campbell
,
R.
Kuhnle
,
H. G.
Busmann
, and
I. V.
Hertel
,
Chem. Phys. Lett.
182
,
114
(
1991
);
M.
Ata
,
N.
Takahashi
, and
K.
Nojima
,
J. Phys. Chem.
98
,
9960
(
1994
).
7.
A. A.
Shvartsburg
,
R. R.
Hudgins
,
R.
Gutierrez
,
G.
Jungnickel
,
T.
Frauenheim
, and
K. A.
Jackson
,
J. Phys. Chem. A
103
,
5275
(
1999
).
8.
D.
Strelnikov
and
W.
Krätschmer
,
Carbon
48
,
1702
(
2010
).
9.
W.
Qian
,
S.-C.
Chuang
,
R. B.
Amador
,
T.
Jarrossan
,
M.
Sander
,
S.
Pieniazek
,
S. I.
Khan
, and
Y.
Rubin
,
J. Am. Chem. Soc.
125
,
2066
(
2003
);
[PubMed]
A.
Ayuela
,
P. W.
Fowler
,
D.
Mitchell
,
R.
Schmidt
,
G.
Seifert
, and
F.
Zerbetto
,
J. Phys. Chem. 1996
100
,
15634
(
1966
).
10.
Classical fullerenes are hollow carbon cages comprising hexagon and pentagon rings (always twelve pentagons). For each even nuclearity classical cage there are many possible isomers, which can be classified into two general types: isolated- (IPR) and non-isolated pentagon ring (non-IPR) fullerenes. All classical C62 isomers are non-IPR fullerene cages. Additionally, fullerenes may also have non-classical cage structures comprising one or more other ring sizes (e.g., heptagons or fourfold rings).
11.
T.
Ogataa
,
Y.
Tatamitania
, and
T.
Mienob
,
Carbon
47
,
683
(
2009
).
12.
N.
Dragoe
,
H.
Shimotani
,
J.
Wang
,
M.
Iwaya
,
A.
de Bettencourt-Dias
,
A.
Balch
, and
K.
Kitazawa
,
J. Am. Chem. Soc.
123
,
1294
(
2001
).
13.
T.
Fabre
,
W.
Treleaven
,
T.
McCarley
,
C.
Newton
,
R.
Landry
,
M.
Saraiva
, and
R.
Strongin
,
J. Org. Chem.
63
,
3522
(
1998
);
N.
Dragoe
,
S.
Tanibayashi
,
K.
Nakahara
,
S.
Nakao
,
H.
Shimotani
,
L.
Xiao
,
K.
Kitazawa
,
Y.
Achiba
,
K.
Kikuchi
, and
K.
Nojima
,
Chem. Commun.
1999
,
85
.
14.
A.
Böttcher
,
P.
Weis
,
A.
Bihlmeier
, and
M. M.
Kappes
,
Phys. Chem. Chem. Phys.
6
,
5213
(
2004
).
15.
D.
Löffler
,
S.
Ulas
,
S.-S.
Jester
,
P.
Weis
,
A.
Böttcher
, and
M. M.
Kappes
,
Phys. Chem. Chem. Phys.
12
,
10671
(
2010
).
16.
H.
Haberland
,
M.
Karrais
,
M.
Mall
, and
Y.
Thurner
,
J. Vac. Sci. Technol. A
10
,
3266
(
1992
);
H.
Haberland
,
M.
Mail
,
M.
Mossler
,
Y.
Qiang
,
T.
Reiners
, and
Y.
Thurner
,
J. Vac. Sci. Technol. A
12
,
2925
(
1994
).
17.
TURBOMOLE V6.0 2009, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; see http://www.turbomole.com.
18.
D.
Rappoport
and
F.
Furche
,
J. Chem. Phys.
126
,
201104
(
2007
).
19.
MOPAC 2009, James J. P. Stewart, Stewart Computational Chemistry, version 9.314L, see HTTP://OpenMOPAC.net.
20.
V. M.
Senyavin
,
A. A.
Popov
, and
A. A.
Granovsky
, “
Vibrational spectra of C60 polymers: Experiment and first principle assignment
”, in: Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, NATO Science Series Vol 172, p. 457 (
2005
).
21.
T. A.
Beu
,
L.
Horváth
, and
I.
Ghişoiu
,
Phys. Rev. B
79
,
054112
(
2009
).
22.
Note that due to this “C58+” background, the detection sensitivity for any C58 generated in the film and thermally desorbed from it, is reduced. If such processes occur, they give rise to a C58+ contribution which is at most 10% of the “background C58+” level derived from ionization induced fragmentation.
23.
M.
Büttner
,
P.
Reinke
,
P.
Oelhafen
,
Surf. Sci.
60
,
280
(
2007
).
24.
P.
He
,
S.
Bao
,
Ch.
Yu
,
Y.
Xu
,
Surf. Sci.
328
,
287
(
1995
).
25.
P.
Reinke
,
M. G.
Garnier
, and
P.
Oelhafen
,
J. Electron Spectrosc. Relat. Phenom.
136
,
239
(
2004
);
S.
Bhattacharyya
,
C.
Spaeth
, and
F.
Richter
,
J. Appl. Phys.
89
,
2414
(
2001
).
26.
A.
Böttcher
,
P.
Weis
,
S.-S.
Jester
,
D.
Löffler
,
A.
Bihlmeier
,
W.
Klopper
, and
M. M.
Kappes
,
Phys. Chem. Chem. Phys.
7
,
2816
(
2005
).
27.
D.
Löffler
,
N.
Bajales
,
M.
Cudaj
,
P.
Weis
,
S.
Lebedkin
,
A.
Bihlmeier
,
D. P.
Tew
,
W.
Klopper
,
A.
Böttcher
, and
M. M.
Kappes
,
J. Chem. Phys.
130
,
164705
(
2009
).
28.
Y.
Fang
,
Q.-J.
Huang
,
P.
Wang
,
X.-Y.
Li
, and
N.-T.
Yu
,
Chem. Phys. Lett.
381
,
255
(
2003
).
29.
P. A.
Gravil
,
M.
Devel
,
Ph.
Lambin
,
X.
Bouju
,
Ch.
Girard
, and
A. A.
Lucas
,
Phys. Rev. B
53
,
1622
(
1996
).
30.
M. F.
Budyka
,
T. S.
Zyubina
, and
A. G.
Ryabenko
,
Int. J. Quantum Chem.
88
,
652
(
2002
);
M. F.
Budyka
,
T. S.
Zyubina
,
A. G.
Ryabenko
,
V. E.
Muradyan
,
S. E.
Esipov
, and
N. I.
Cherepanova
,
Chem. Phys. Lett.
354
,
93
(
2002
).
31.
Y.-H.
Cui
,
D. L.
Chen
,
W. Q.
Tian
, and
J.-K.
Feng
,
J. Phys. Chem. A
111
,
7933
(
2007
).
32.
Y.
Iwasa
,
T.
Arima
,
R. M.
Fleming
,
T.
Siegrist
,
O.
Zhou
,
R. C.
Haddon
,
L. J.
Rothberg
,
K. B.
Lyons
,
H. T.
Carter
 Jr.
,
A. F.
Hebbard
,
R.
Tycko
,
G.
Dabbagh
,
J. J.
Krajewski
,
G. A.
Tomas
, and
T.
Yagi
,
Science
264
,
1570
(
1994
).
33.
H.
Ulbricht
,
G.
Moos
, and
T.
Hertel
,
Phys. Rev. Lett.
90
,
095501
(
2003
).
A. M.
de Jong
and
J. W.
Niemantsverdriet
,
Surf. Sci.
233
,
355
(
1990
).
35.
A. A.
Shvartsburg
,
R. R.
Hudgins
,
P.
Dugourd
,
R.
Gutierrez
,
T.
Frauenheim
, and
M. F.
Jarrold
,
Phys. Rev. Lett.
84
,
2421
(
2000
).
36.
N.
Dragoe
,
S.
Tanibayashi
,
K.
Nakahara
,
S.
Nakao
,
H.
Shimotani
,
L.
Xiao
,
K.
Kitazawa
,
Y.
Achiba
,
K.
Kikuchi
, and
K.
Nojima
,
Chem. Commun.
1
,
85
(
1999
).
37.
A. D.
Prathan
,
H.
Partridge
,
C. W.
Bauschlicher
 Jr.
,
J. Chem. Phys.
101
,
3857
(
1994
).
38.
Over the annealing temperature range from 300 to 800 K, the HOMO-LUMO gap of the –C2–C60–C2–C60–C2– network increases slightly with Tf from 1.45 eV to ∼1.65 eV.
39.
P.
Reinke
and
P.
Oelhafen
,
Phys. Rev. B
60
,
15772
(
1999
).
40.
J. G.
Zhou
,
H. T.
Fang
,
J. M.
Maley
|,
J. Y. P.
Ko
,
M.
Murphy
,
Y.
Chu
,
R.
Sammynaiken
, and
T. K.
Sham
,
J. Phys. Chem. C
113
,
6114
(
2009
).
41.
See supplementary material at http://dx.doi.org/10.1063/1.3673887 for (1) conversion yield vs kinetic energy of C2-, (2) electronic structure of the non-IPR C62 and C2/C60, (3) thermal desorption of C62 from non-IPR C62 and C2/C60 films, and (4) coordinates of geometry optimized structures for short Cn-Cn oligomers.

Supplementary Material

You do not currently have access to this content.