Nitrogen 1s (N ls) core-to-Rydberg excitation spectra of hydrogen-bonded clusters of ammonia (AM) have been studied in the small cluster regime of beam conditions with time-of-flight (TOF) fragment-mass spectroscopy. By monitoring partial-ion-yield spectra of cluster-origin products, “cluster” specific excitation spectra could be recorded. Comparison of the “cluster” band with “monomer” band revealed that the first resonance bands of clusters corresponding to N 1s → 3sa1/3pe of AM monomer are considerably broadened. The changes of the experimental core-to-Rydberg transitions ΔFWHM (N 1s → 3sa1/3pe) = ∼0.20/∼0.50 eV compare well with the x ray absorption spectra of the clusters generated by using density functional theory (DFT) calculation. The broadening of the core-to-Rydberg bands in small clusters is interpreted as being primarily due to the splitting of non-equivalent core-hole N 1s states caused by both electrostatic core-hole and hydrogen-bonding (H3N···H–NH2) interactions upon dimerization. Under Cs dimer configuration, core-electron binding energy of H−N (H-donor) is significantly decreased by the intermolecular core-hole interaction and causes notable redshifts of core-excitation energies, whereas that of lone-pair nitrogen (H-acceptor) is slightly increased and results in appreciable blueshifts in the core-excitation bands. The result of the hydrogen-bonding interaction strongly appears in the nσ* orbital correlation, destabilizing H−N donor Rydberg states in the direction opposite to the core-hole interaction, when excited N atom with H−N donor configuration strongly possesses the Rydberg component of anti-bonding σ* (N−H) character. Contributions of other cyclic H-bonded clusters (AM)n with n ≥ 3 to the spectral changes of the N 1s → 3sa1/3pe bands are also examined.

1.
J.
Stöhr
,
NEXAFS Spectroscopy
,
Springer Series in Surface Science
Vol.
25
(
Springer
,
Berlin,
1992
).
2.
Ph.
Wernet
,
D.
Nordlund
,
U.
Bergmann
,
M.
Cavalleri
,
M.
Odelius
,
H.
Ogasawara
,
L. Å.
Näslund
,
T. K.
Hirsch
,
L.
Ojamäe
,
L. G. M.
Pettersson
, and
A.
Nilsson
,
Science
304
,
994
(
2004
).
3.
E.
Rühl
,
Int. J. Mass Spectrom.
229
,
117
(
2003
).
4.
K.
Tabayashi
,
K.
Yamamoto
,
O.
Takahashi
,
Y.
Tamenori
,
R.
Harries
,
T.
Gejo
,
M.
Iseda
,
T.
Tamura
,
K.
Honma
,
I. H.
Suzuki
,
S.
Nagaoka
, and
T.
Ibuki
,
J. Chem. Phys.
125
,
194307
(
2006
).
5.
K.
Tabayashi
,
M.
Chohda
,
T.
Yamanaka
,
Y.
Tsutsumi
,
O.
Takahashi
,
H.
Yoshida
, and
M.
Taniguchi
,
J. Phys. Conf. Ser.
235
,
012017
(
2010
).
6.
K.
Tabayashi
,
Y.
Tsutsumi
,
M.
Chohda
,
O.
Takahashi
,
Y.
Tamenori
,
I.
Higuchi
,
I. H.
Suzuki
,
S.
Nagaoka
,
T.
Gejo
, and
K.
Honma
,
J. Phys. Conf. Ser.
288
,
012022
(
2011
).
7.
L. A.
Curtiss
and
M.
Blander
,
Chem. Rev.
88
,
827
(
1988
).
8.
S.
Scheiner
,
Hydrogen Bonding
(
Oxford University Press
,
Oxford
,
1997
).
9.
G. A.
Jeffrey
,
An Introduction to Hydrogen Bonding
(
Oxford University Press
,
Oxford
,
1997
).
10.
A. E.
Reed
,
F.
Weinhold
,
L. A.
Curtiss
, and
D. J.
Pochatko
,
J. Chem. Phys.
84
,
5687
(
1986
).
11.
P.
Hobza
and
Z.
Havlas
,
Chem. Rev.
100
,
4253
(
2000
).
12.
O.
Björneholm
,
F.
Federmann
,
S.
Kakar
, and
T.
Möller
,
J. Chem. Phys.
111
,
546
(
1999
).
13.
K.
Tabayashi
,
K.
Yamamoto
,
T.
Maruyama
,
H.
Yoshida
,
K.
Okada
,
Y.
Tamenori
,
I. H.
Suzuki
,
T.
Gejo
, and
K.
Honma
,
J. Electron Spectrosc. Relat. Phenom.
184
,
134
(
2011
).
14.
O.
Takahashi
,
S.
Yamanouchi
,
K.
Yamamoto
, and
K.
Tabayashi
,
Chem. Phys. Lett.
419
,
501
(
2006
).
15.
K.
Tabayashi
,
M.
Chohda
,
T.
Yamanaka
,
O.
Takahashl
, and
H.
Yoshida
,
Nuc. Instrum. Methods Phys. Res.
A619
,
388
(
2010
).
16.
Y.
Tamenori
,
K.
Okada
,
O.
Takahashi
,
S.
Arakawa
,
K.
Tabayashi
,
A.
Hiraya
,
T.
Gejo
, and
K.
Honma
,
J. Chem. Phys.
128
,
124321
(
2008
).
17.
Y.
Tamenori
,
O.
Takahashi
,
K.
Yamashita
,
T.
Yamaguchi
,
K.
Okada
,
K.
Tabayashi
,
T.
Gejo
, and
K.
Honma
,
J. Chem. Phys.
131
,
174311
(
2009
).
18.
The change in CEBE upon cluster formation is due to the electrostatic interaction between the positive core-hole state of the particular core-atom considered and the surrounding molecules, and possible charge-transfer of the core-atom participated in the H-bonding (D−H···A) system. The term “intermolecular core-hole interaction” refers to the former interaction where induced polarization and relaxation effects in the ionization process are also involved.
19.
Handbook of Chemistry and Physics
, edited by
R. C.
Weast
(
CRC
,
Boca Raton
,
2000
).
20.
E. H. T.
Olthof
,
A.
van der Avoird
, and
P. E. S.
Wormer
,
J. Chem. Phys.
101
,
8430
(
1994
);
J. S.
Lee
and
S. Y.
Park
,
J. Chem. Phys.
112
,
230
(
2000
);
A. D.
Boese
,
A.
Chandra
,
J. N. L.
Martin
, and
D.
Marx
,
J. Chem. Phys.
119
,
5965
(
2003
).
21.
J. A.
Altmann
,
M. G.
Govender
, and
T. A.
Ford
,
Mol. Phys.
103
,
949
(
2005
).
22.
S. A.
Kulkarmi
and
R. K.
Pathak
,
Chem. Phys. Lett.
336
,
278
(
2001
);
F. M.
Abu-Awwad
,
J. Mol. Struct.: THEOCHEM
683
,
57
(
2004
).
23.
S.
Tada
,
C.
Harada
,
H.
Yoahida
,
S.
Wada
,
A.
Hiraya
,
K.
Tanaka
, and
K.
Tabayashi
,
J. Chem. Phys.
123
,
124309
(
2005
).
24.
K.
Tabayashi
,
T.
Maruyama
,
K.
Tanaka
,
H.
Namatame
, and
M.
Taniguchi
,
AIP Conf. Proc.
879
,
1788
(
2007
).
25.
W. C.
Willey
and
I. H.
McLaren
,
Rev. Sci. Instr.
26
,
1150
(
1955
).
26.
K. C.
Prince
,
L.
Avaldi
,
M.
Coreno
,
R.
Camilloni
, and
M.
de Simone
,
J. Phys. B
32
,
2551
(
1999
).
27.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 03, Revision C.02, Gaussian, Inc., Wallingford, CT,
2004
.
28.
J. B.
Foresman
and
A.
Frish
,
Exploring Chemistry with Electronic Structure Methods
, 2nd ed. (
Gaussian, Inc.
,
Pittsburgh
, PA,
1993
).
29.
P.
Sinha
,
S. E.
Boesch
,
C.
Gu
,
R. A.
Wheeler
, and
A. K.
Wilson
,
J. Phys. Chem. A
108
,
9213
(
2004
).
30.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
533
(
1970
).
31.
K.
Hermann
,
L. G. M.
Pettersson
,
M. E.
Casida
,
C.
Daul
,
A.
Goursot
,
A.
Koester
,
E.
Proynov
,
A.
St-Amant
,
D. R.
Salahub
,
V.
Carravetta
,
H.
Duarte
,
N.
Godbout
,
J.
Guan
,
C.
Jamorski
,
M.
Leboeuf
,
V.
Malkin
,
O.
Malkina
,
M.
Nyberg
,
L.
Pedocchi
,
F.
Sim
,
L.
Triguero
, and
A.
Vela
, StoBe-deMon version 2.1, StoBe Software,
2005
.
32.
L.
Triguero
,
L. G. M.
Pettersson
, and
H.
Ågren
,
Phys. Rev. B
58
,
8097
(
1998
).
33.
L.
Triguero
,
O.
Plashkevych
,
L. G. M.
Pettersson
, and
H.
Ågren
,
J. Electron Spectrosc. Relat. Phenom.
104
,
195
(
1999
).
34.
O.
Takahashi
and
L. G. M.
Pettersson
,
J. Chem. Phys.
121
,
10339
(
2004
).
35.
W.
Kutzelnigg
,
U.
Heischer
, and
M.
Schindler
,
NMR-Basic Principles and Progress
(
Springer
,
Heidelberg
,
1990
).
36.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
33
,
8800
(
1986
);
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
37.
C.
Kolczewski
,
R.
Puttener
,
O.
Plashkexych
,
H.
Ågren
,
V.
Staemmler
,
M.
Martins
,
G.
SneIl
,
A. S.
Schlachter
,
M.
Sant’Anna
,
G.
Kaindl
, and
L. G. M.
Pettersson
,
J. Chem. Phys.
115
,
6426
(
2001
).
38.
R. N. S.
Sodhi
and
C. E.
Brion
,
J. Electron Spectrosc. Relat. Phenom.
36
,
187
(
1985
).
39.
J.
Schirmer
,
A. B.
Trofimov
,
K. J.
Randall
,
J.
Feldhaus
,
A. M.
Bradshaw
,
Y.
Ma
,
C. T.
Chen
, and
F.
Sette
,
Phys. Rev. A
47
,
1136
(
1993
);
[PubMed]
A.
Jurgensen
and
R. G.
Cavell
,
Chem. Phys.
273
,
77
(
2001
);
A.
Lindgren
,
M.
Gisselbrecht
,
F.
Burmeister
,
A.
Naves de Brito
,
A.
Kivimaki
, and
S. L.
Sorensen
,
J. Chem. Phys.
122
,
114306
(
2005
).
[PubMed]
40.
W. L.
Jolly
,
K. D.
Bomben
, and
C. J.
Eyermann
,
At. Data Nucl. Data Tables
31
,
433
(
1984
).
41.
T.
Yamanaka
, Master thesis,
Hiroshima University
,
2009
.
42.
R.
Karnbach
,
M.
Joppien
,
J.
Stapelfeld
,
J.
Wörmer
, and
T.
Möller
,
Rev. Sci. Instrum.
64
,
2838
(
1993
).
43.
J. G.
Loeser
,
C. A.
Schmuttenmaer
,
R. C.
Cohen
,
M. J.
Elrod
,
D. W.
Steyert
,
R. J.
Saykally
,
R. E.
Bumgarner
, and
G. A.
Blake
,
J. Chem. Phys.
97
,
4727
(
1992
);
E. N.
Karyakin
,
G. T.
Fraser
,
J. G.
Loeser
, and
R. J.
Saykally
,
J. Chem. Phys.
110
,
9555
(
1997
).
44.
A.
Halkier
,
T.
Helgaker
,
P.
Jϕrgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
);
K. A.
Peterson
,
A. K.
Wilson
,
D. E.
Woon
, and
T. H.
Dunning
 Jr.
,
Thor. Chem. Acc.
97
,
251
(
1997
).
45.
T. A.
Beu
and
U.
Buck
,
J. Chem. Phys.
114
,
7848
(
2001
)
46.
A.
Bondi
,
J. Phys. Chem.
68
,
441
(
1964
).
47.
The positive chemical shift, ΔCEBE > 0 obtained for the pure H-acceptor nitrogen is consistent with the general trend calculated for O−H···O hydrogen-bonded dimers by Ågren's group, see
G.
Tu
,
Y.
Tu
,
O.
Vahtras
, and
H.
Ågren
,
Chem. Phys. Lett.
468
,
294
(
2009
), and references therein.
48.
The interaction that stabilizes a cluster core-ionization state over the corresponding monomer state decreases the core-ionization energy of the cluster relative to the monomer one.
49.
P.
Aplincourt
,
C.
Bureau
,
J.-L.
Anthoine
, and
D. P.
Chong
,
J. Phys. Chem. A
105
,
7364
(
2001
).
You do not currently have access to this content.