We report the implementation of nuclear magnetic resonance (NMR) shielding tensors within the four-component relativistic Kohn–Sham density functional theory including non-collinear spin magnetization and employing London atomic orbitals to ensure gauge origin independent results, together with a new and efficient scheme for assuring correct balance between the large and small components of a molecular four-component spinor in the presence of an external magnetic field (simple magnetic balance). To test our formalism we have carried out calculations of NMR shielding tensors for the HX series (X = F, Cl, Br, I, At), the Xe atom, and the Xe dimer. The advantage of simple magnetic balance scheme combined with the use of London atomic orbitals is the fast convergence of results (when compared with restricted kinetic balance) and elimination of linear dependencies in the basis set (when compared to unrestricted kinetic balance). The effect of including spin magnetization in the description of NMR shielding tensor has been found important for hydrogen atoms in heavy HX molecules, causing an increase of isotropic values of 10%, but negligible for heavy atoms.

1.
M.
Kaupp
,
M.
Buhl
, and
V. G.
Malkin
,
Calculation of NMR and EPR Parameters: Theory and Applications
(
Wiley-VCH
,
Berlin
,
2004
).
2.
N. F.
Ramsey
,
Phys. Rev.
77
(
4
),
567
(
1950
).
3.
N. F.
Ramsey
,
Phys. Rev.
78
(
6
),
699
(
1950
).
4.
N. F.
Ramsey
,
Phys. Rev.
83
(
3
),
540
(
1951
).
5.
N. F.
Ramsey
,
Phys. Rev.
86
(
2
),
243
(
1952
).
6.
P.
Pyykkö
,
Theor. Chem. Acc.
103
,
214
(
2000
).
7.
T.
Saue
,
Spin-interactions and the non-relativistic of electrodynamics
,
Advances in Quantum Chemistry
Vol.
48
(
Academic Press
,
New York
,
2005
), pp.
383
405
.
8.
M. A. M.
Forgeron
,
M.
Gee
, and
R. E.
Wasylishen
,
J. Phys. Chem. A.
108
(
22
),
4895
(
2004
).
9.
P.
Manninen
,
K.
Ruud
,
P.
Lantto
, and
J.
Vaara
,
J. Chem. Phys.
122
(
11
),
114107
(
2005
);
[PubMed]
P.
Manninen
,
K.
Ruud
,
P.
Lantto
, and
J.
Vaara
,
J. Chem. Phys.
124
,
149901
(
2006
).
10.
S. K.
Wolff
,
T.
Ziegler
,
E.
van Lenthe
, and
E. J.
Baerends
,
J. Chem. Phys.
110
(
16
),
7689
(
1999
).
11.
P.
Pyykkö
,
A.
Görling
, and
N.
Rösch
,
Mol. Phys.
61
(
1
),
195
(
1987
).
12.
M.
Kaupp
,
O. L.
Malkina
,
V. G.
Malkin
, and
P.
Pyykkö
,
Chem. Eur. J.
4
(
1
),
118
(
1998
).
13.
C. J.
Jameson
and
A. C. de
Dios
,
Theoretical and Physical Aspects of Nuclear Shielding
,
Nuclear Magnetic Resonance
Vol.
36
(
The Royal Society of Chemistry
,
London
,
2007
), pp.
50
71
.
14.
L. B.
Casabianca
and
A. C. de
Dios
,
J. Chem. Phys.
128
(
5
),
052201
(
2008
).
15.
J.
Vaara
,
Phys. Chem. Chem. Phys.
9
(
40
),
5399
(
2007
).
16.
L.
Cheng
,
Y.
Xiao
, and
W.
Liu
,
J. Chem. Phys.
130
(
14
),
144102
(
2009
);
[PubMed]
L.
Cheng
,
Y.
Xiao
, and
W.
Liu
,
J. Chem. Phys.
131
,
019902
(
2009
).
[PubMed]
17.
H. F.
Hameka
,
Rev. Mod. Phys.
34
,
87
(
1962
).
18.
S. T.
Epstein
,
The Variational Method in Quantum Chemistry
(
Academic Press
,
New York
,
1974
).
19.
W.
Kutzelnigg
,
J. Mol. Struct.: THEOCHEM
202
,
11
(
1989
).
20.
C.
van Wüllen
,
Chemical shifts with Hartree–Fock and density–functional methods
, in
Calculation of NMR and EPR Parameters
, edited by
M.
Kaupp
,
M.
Bühl
and
V. G.
Malkin
(
Wiley-VCH
,
Weinheim
,
2004
).
22.
R.
Ditchfield
,
Mol. Phys.
27
(
4
),
789
(
1974
).
23.
A. E.
Hansen
and
T. D.
Bouman
,
J. Chem. Phys.
82
(
11
),
5035
(
1985
).
24.
A. C. de
Dios
,
Prog. Nucl. Magn. Reson. Spectrosc.
29
(
3–4
),
229
(
1996
).
25.
H. M.
Quiney
,
H.
Skaane
, and
I. P.
Grant
,
Ab Initio Relativistic Quantum Chemistry: Four-Components Good, Two-Components Bad!
,
Advances in Quantum Chemistry
Vol.
36
(
Academic Press
,
New York
,
1999
), pp.
1
49
.
26.
S.
Hamaya
,
H.
Maeda
,
M.
Funaki
, and
H.
Fukui
,
J. Chem. Phys.
129
(
22
),
224103
(
2008
).
27.
M.
Iliaš
,
T.
Saue
,
T.
Enevoldsen
, and
H. J. A.
Jensen
,
J. Chem. Phys.
131
(
12
),
124119
(
2009
).
28.
S.
Hamaya
and
H.
Fukui
,
Bull. Chem. Soc. Jpn.
83
(
6
),
635
(
2010
).
29.
L.
Cheng
,
Y.
Xiao
, and
W.
Liu
,
J. Chem. Phys.
131
(
24
),
244113
(
2009
).
30.
S.
Komorovský
,
M.
Repiský
,
O. L.
Malkina
, and
V. G.
Malkin
,
J. Chem. Phys.
132
(
15
),
154101
(
2010
).
31.
G. A.
Aucar
,
T.
Saue
,
L.
Visscher
and
H. J. A.
Jensen
,
J. Chem. Phys.
110
(
13
),
6208
(
1999
).
33.
W.
Kutzelnigg
,
Phys. Rev. A.
67
(
3
),
032109
(
2003
).
34.
M. M.
Sternheim
,
Phys. Rev.
128
,
676
(
1962
).
36.
Y.
Xiao
,
W.
Liu
,
L.
Cheng
, and
D.
Peng
,
J. Chem. Phys.
126
(
21
),
214101
(
2007
).
37.
L.
Visscher
,
Magnetic Balance and Explicit Diamagnetic Expressions for Nuclear Magnetic Resonance Shielding Tensors
,
Advances in Quantum Chemistry
Vol.
48
(
Academic Press
,
New York
,
2005
), pp.
369
381
.
38.
S.
Komorovský
,
M.
Repiský
,
O. L.
Malkina
,
V. G.
Malkin
,
I. M.
Ondík
, and
M.
Kaupp
,
J. Chem. Phys.
128
(
10
),
104101
(
2008
).
39.
Y.
Ishikawa
,
T.
Nakajima
,
M.
Hada
, and
H.
Nakatsuji
,
Chem. Phys. Lett.
283
(
1–2
),
119
(
1998
).
40.
M.
Hada
,
Chem. Phys. Lett.
310
(
3–4
),
342
(
1999
).
41.
M.
Hada
,
Chem. Phys. Lett.
321
(
5–6
),
452
(
2000
).
42.
M.
Kato
,
M.
Hada
,
R.
Fukuda
, and
H.
Nakatsuji
,
Chem. Phys. Lett.
408
(
1–3
),
150
(
2005
).
43.
L.
Visscher
,
T.
Enevoldsen
,
T.
Saue
,
H. J.A.
Jensen
, and
J.
Oddershede
,
J. Comput. Chem.
20
(
12
),
1262
(
1999
).
44.
H. M.
Quiney
,
H.
Skaane
, and
I. P.
Grant
,
Chem. Phys. Lett.
290
,
473
(
1998
).
45.
DIRAC, a relativistic ab initio electronic structure program, Release DIRAC10 (
2010
), written by
T.
Saue
,
L.
Visscher
, and
H. J.Aa.
Jensen
, with contributions from
R.
Bast
,
K. G.
Dyall
,
U.
Ekström
,
E.
Eliav
,
T.
Enevoldsen
,
T.
Fleig
,
A. S. P.
Gomes
,
J.
Henriksson
,
M.
Iliaš
,
Ch. R.
Jacob
,
S.
Knecht
,
H. S.
Nataraj
,
P.
Norman
,
J.
Olsen
,
M.
Pernpointner
,
K.
Ruud
,
B.
Schimmelpfennig
,
J.
Sikkema
,
A.
Thorvaldsen
,
J.
Thyssen
,
S.
Villaume
,
S.
Yamamoto
(see http://dirac.chem.vu.nl).
46.
M.
Hanni
,
P.
Lantto
,
M.
Iliaš
,
H. J.A.
Jensen
, and
J.
Vaara
,
J. Chem. Phys.
127
(
16
),
164313
(
2007
).
47.
M.
Pecul
,
T.
Saue
,
K.
Ruud
, and
A.
Rizzo
,
J. Chem. Phys.
121
,
3051
(
2004
).
48.
A.
Antušek
,
M.
Pecul
, and
J.
Sadlej
,
Chem. Phys. Lett.
427
(
4–6
),
281
(
2006
).
49.
V. G.
Malkin
,
O. L.
Malkina
,
R.
Reviakine
,
A. V.
Arbuznikov
,
M.
Kaupp
,
B.
Schimmelpfennig
,
I.
Malkin
,
M.
Repiský
,
S.
Komorovský
,
P.
Hrobárik
,
E.
Malkin
,
T.
Helgaker
, and
K.
Ruud
, ReSpect program, version 3.1,
2007
.
50.
P.
Manninen
,
P.
Lantto
,
J.
Vaara
, and
K.
Ruud
,
J. Chem. Phys.
119
(
5
),
2623
(
2003
).
51.
C. J.
Jameson
,
D. N.
Sears
, and
A. C.
de Dios
,
J. Chem. Phys.
118
(
6
),
2575
(
2003
).
52.
W.
Kutzelnigg
,
J. Chem. Phys.
126
(
20
),
201103
(
2007
).
53.
L.
Visscher
,
P. J. C.
Aerts
,
O.
Visser
, and
W. C.
Nieuwpoort
,
Int. J. Quantum Chem., Quantum Chem. Symp.
40
(
S25
),
131
(
1991
).
54.
W.
Kutzelnigg
,
Int. J. Quantum Chem.
25
(
1
),
107
(
1984
).
55.
K. G.
Dyall
,
J. Chem. Phys.
100
(
3
),
2118
(
1994
).
56.
W.
Kutzelnigg
and
W.
Liu
,
J. Chem. Phys.
123
(
24
),
241102
(
2005
).
57.
L.
Visscher
and
T.
Saue
,
J. Chem. Phys.
113
(
10
),
3996
(
2000
).
58.
K.
Schwarzschild
,
Gött. Nach. Math.-Phys. Kl.
128
,
126
(
1903
).
59.
M.
Gell-Mann
,
Nuovo Cimento, Suppl.
4
,
848
(
1956
).
60.
T.
Saue
and
T.
Helgaker
,
J. Comput. Chem.
23
(
8
),
814
(
2002
).
61.
T.
Saue
and
H. J. A.
Jensen
,
J. Chem. Phys.
118
(
2
),
522
(
2003
).
62.
P.
Sałek
,
T.
Helgaker
, and
T.
Saue
,
Chem. Phys.
311
(
1-2
),
187
(
2005
).
63.
R.
Bast
,
H. J.A.
Jensen
, and
T.
Saue
,
Int. J. Quantum Chem.
109
(
10
),
2091
(
2009
).
64.
P.
Saĺek
,
O.
Vahtras
,
T.
Helgaker
, and
H.
Ågren
,
J. Chem. Phys.
117
(
21
),
9630
(
2002
).
65.
J.
Olsen
,
K. L.
Bak
,
K.
Ruud
,
T.
Helgaker
, and
P.
Jørgensen
,
Theor. Chem. Acc.
90
(
5–6
),
421
(
1995
), see www.springerlink.com/content/rx2frduqqx57c9un/.
66.
L.
Visscher
,
Theor. Chem. Acc.
98
,
68
(
1997
).
67.
DALTON, a molecular electronic structure program, Release Dalton2011 (
2011
), see http://daltonprogram.org/.
68.
K.
Huber
and
G.
Herzberg
,
Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules
(
Van Nostrand Reinhold
,
New York
,
1979
). See also the NIST web site: http://webbook.nist.gov/.
69.
J.
Styszynski
,
Chem. Phys. Lett.
317
(
3–5
),
351
(
2000
).
70.
L.
Visscher
and
K. G.
Dyall
,
At. Data Nucl. Data Tables
67
(
2
),
207
(
1997
). See also http://www.few.vu.nl/visscher/FiniteNuclei/FiniteNuclei.htm.
71.
J. C.
Slater
,
Phys. Rev.
81
(
3
),
385
(
1951
).
72.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
73.
J. P.
Perdew
,
Phys. Rev. B.
33
(
12
),
8822
(
1986
);
J. P.
Perdew
,
Phys. Rev. B.
34
,
7406
(
1986
).
74.
J. P.
Perdew
and
W.
Yue
,
Phys. Rev. B.
33
(
12
),
8800
(
1986
);
J. P.
Perdew
and
W.
Yue
,
Phys. Rev. B.
40
,
3399
(
1989
).
75.
A. D.
Becke
,
Phys. Rev. A.
38
(
6
),
3098
(
1988
).
76.
A. D.
Becke
,
J. Chem. Phys.
98
(
7
),
5648
(
1993
).
77.
T. W.
Keal
and
D. J.
Tozer
,
J. Chem. Phys.
119
(
6
),
3015
(
2003
).
78.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
98
(
2
),
1358
(
1993
).
79.
T. H.
Dunning
,
J. Chem. Phys.
90
(
2
),
1007
(
1989
).
80.
K. G.
Dyall
,
Theor. Chem. Acc.
109
,
335
(
2003
). The basis sets are available from the dirac web site http://dirac.chem.sdu.dk.
81.
K. G.
Dyall
,
Theor. Chem. Acc.
115
,
441
(
2006
). The basis sets are available from the dirac web site http://dirac.chem.sdu.dk.
82.
J.
Vaara
and
P.
Pyykkö
,
J. Chem. Phys.
118
,
2973
(
2003
).
83.
A.
Wu
,
Y.
Zhang
,
X.
Xu
, and
Y.
Yan
,
J. Comput. Chem.
28
,
2431
(
2007
).
84.
T.
Helgaker
,
P. J.
Wilson
,
R. D.
Amos
, and
N. C.
Handy
,
J. Chem. Phys.
113
(
8
),
2983
(
2000
).
85.
G.
Magyarfalvi
and
P.
Pulay
,
J. Chem. Phys.
119
,
1350
(
2003
).
86.
T. W.
Keal
and
D. J.
Tozer
,
J. Chem. Phys.
121
(
12
),
5654
(
2004
).
87.
T. W.
Keal
,
D. J.
Tozer
, and
T.
Helgaker
,
Chem. Phys. Lett.
391
,
374
(
2004
).
88.
L.
Armangue
,
M.
Sola
, and
M.
Swart
,
J. Phys. Chem. A.
115
(
7
),
1250
(
2011
).
89.
W. G.
Schneider
,
H. J.
Bernstein
, and
J. A.
Pople
,
J. Chem. Phys.
28
(
4
),
601
(
1958
).
90.
W. T.
Raynes
,
Nuclear Magnetic Resonance
,
Specialist Periodical Report
Vol.
7
(
The Royal Society of Chemistry
,
Cambridge
,
1978
).
91.
D. B.
Chesnut
,
Ab Initio Calculations of NMR Chemical Shielding
,
Annual Reports on NMR Spectroscopy
Vol.
29
(
Academic Press
,
New York
,
1994
), pp.
71
122
.
92.
A.
Antušek
,
M.
Jaszuński
, and
M.
Olejniczak
,
J. Comput. Theor. Chem.
970
(
1–3
),
54
(
2011
).
93.
O. L.
Malkina
,
S.
Komorovský
,
L.
Visscher
, and
V. G.
Malkin
,
J. Chem. Phys.
134
(
8
),
086101
(
2011
).
94.
P.
Lantto
,
K.
Jackowski
,
W.
Makulski
,
M.
Olejniczak
, and
M.
Jaszunski
,
J. Phys. Chem. A.
115
(
38
),
10617
(
2011
).
95.
P.-O.
Åstrand
and
K. V.
Mikkelsen
,
J. Chem. Phys.
104
(
2
),
648
(
1996
).
96.
D. K.
Hindermann
and
C. D.
Cornwell
,
J. Chem. Phys.
48
(
9
),
4148
(
1968
).
97.
D.
Sundholm
,
J.
Gauss
, and
A.
Schäfer
,
J. Chem. Phys.
105
(
24
),
11051
(
1996
).
98.
T. D.
Gierke
and
W. H.
Flygare
,
J. Am. Chem. Soc.
94
(
21
),
7277
(
1972
).
You do not currently have access to this content.