Stochastic simulation of coupled chemical reactions is often computationally intensive, especially if a chemical system contains reactions occurring on different time scales. In this paper, we introduce a multiscale methodology suitable to address this problem, assuming that the evolution of the slow species in the system is well approximated by a Langevin process. It is based on the conditional stochastic simulation algorithm (CSSA) which samples from the conditional distribution of the suitably defined fast variables, given values for the slow variables. In the constrained multiscale algorithm (CMA) a single realization of the CSSA is then used for each value of the slow variable to approximate the effective drift and diffusion terms, in a similar manner to the constrained mean-force computations in other applications such as molecular dynamics. We then show how using the ensuing Fokker-Planck equation approximation, we can in turn approximate average switching times in stochastic chemical systems.

1.
A.
Arkin
,
J.
Ross
, and
H.
McAdams
,
Genetics
149
,
1633
(
1998
).
2.
J.
Villar
,
H.
Kueh
,
N.
Barkai
, and
S.
Leibler
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
5988
(
2002
).
3.
S.
Kar
,
W.
Baumann
,
M.
Paul
, and
J.
Tyson
,
Proc. Natl. Acad. Sci. U.S.A.
16
,
6471
(
2009
).
4.
D.
Gillespie
,
J. Phys. Chem.
81
,
2340
(
1977
).
5.
M.
Gibson
and
J.
Bruck
,
J. Phys. Chem. A
104
,
1876
(
2000
).
6.
Y.
Cao
,
H.
Li
, and
L.
Petzold
,
J. Chem. Phys.
121
,
4059
(
2004
).
7.
G.
Klingbeil
,
R.
Erban
,
M.
Giles
, and
P.
Maini
,
IEEE Trans. Parallel Distrib. Syst.
99
(
2011
).
8.
G.
Klingbeil
,
R.
Erban
,
M.
Giles
, and
P.
Maini
,
Bioinformatics
(
2011
).
9.
R.
Erban
,
I.
Kevrekidis
,
D.
Adalsteinsson
, and
T.
Elston
,
J. Chem. Phy.
124
,
084106
(
2006
).
10.
D.
Gillespie
,
J. Chem. Phys.
115
,
1716
(
2001
).
11.
A.
Chatterjee
,
D.
Vlachos
, and
M.
Katsoulakis
,
J. Chem. Phys.
122
,
024112
(
2005
).
12.
T.
Tian
and
K.
Burrage
,
J. Chem. Phys.
121
,
10356
(
2004
).
13.
A.
Auger
,
P.
Chatelain
, and
P.
Koumoutsakos
,
J. Chem. Phys.
125
,
084103
(
2006
).
14.
D.
Gillespie
,
J. Chem. Phys.
113
,
297
(
2000
).
15.
B.
Mélykúti
,
K.
Burrage
, and
K.
Zygalakis
,
J. Chem. Phys.
132
,
164109
(
2010
).
16.
D.
Adalsteinsson
,
D.
McMillen
, and
T.
Elston
,
BMC Bioinf.
5
(
2004
).
17.
J.
Wilkie
and
Y.
Wong
,
Chem. Phys.
353
,
132
(
2008
).
18.
Y.
Cao
,
D.
Gillespie
, and
L.
Petzold
,
J. Comput. Phys.
206
,
395
(
2005
).
19.
E.
Haseltine
and
J.
Rawlings
,
J. Chem. Phys.
117
,
6959
(
2002
).
20.
Y.
Cao
,
D.
Gillespie
, and
L.
Petzold
,
J. Chem. Phys.
122
,
14116
(
2005
).
21.
W.
E
,
D.
Liu
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
123
,
194107
(
2005
).
22.
E.
Vanden-Eijnden
,
Commun. Math. Sci.
1
,
385
(
2003
).
23.
H.
Salis
and
Y.
Kaznessis
,
J. Chem. Phys.
122
,
054103
(
2005
).
24.
I.
Kevrekidis
,
C.
Gear
,
J.
Hyman
,
P.
Kevrekidis
,
O.
Runborg
, and
K.
Theodoropoulos
,
Commun. Math. Sci.
1
,
715
(
2003
).
25.
M.
Haataja
,
D.
Srolovitz
, and
I.
Kevrekidis
,
Phys. Rev. Lett.
92
,
160603
(
2004
).
26.
R.
Erban
,
I.
Kevrekidis
, and
H.
Othmer
,
Physica D
215
,
1
(
2006
).
27.
C.
Yates
,
R.
Erban
,
C.
Escudero
,
I.
Couzin
,
J.
Buhl
,
I.
Kevrekidis
,
P.
Maini
, and
D.
Sumpter
,
Proc. Natl. Acad. Scie. U.S.A.
106
,
5464
(
2009
).
28.
G.
Torrie
and
J.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
29.
B.
Roux
,
Comput. Phys. Commun.
91
,
275
(
1995
).
30.
G.
Ciccotti
,
R.
Kapral
, and
E.
Vanden-Eijnden
,
ChemPhysChem
6
,
1809
(
2005
).
31.
T.
Lelièvre
,
C. L.
Bris
, and
E.
Vanden-Eijnden
,
C. R. Math. Acad. Sci. Paris
346
,
471
(
2008
).
32.
G.
Ciccotti
,
T.
Lelievre
, and
E.
Vanden-Eijnden
,
Commun. Pure Appl. Math.
61
,
371
(
2008
).
33.
T.
Jahnke
and
W.
Huisinga
,
J. Math. Biol.
54
,
1
(
2007
).
34.
R.
Erban
,
S.
Chapman
,
I.
Kevrekidis
, and
T.
Vejchodský
,
SIAM J. Appl. Math.
70
,
984
(
2009
).
35.
“Burn-in” simply means an initial period of stochastic simulation where the results are ignored, in order to allow the process to enter equilibrium.
36.
C.
Gardiner
,
Handbook of Stochastic Methods
, 2nd ed., Springer Series in Synergetics Vol. 13 (
Springer-Verlag
,
Berlin
,
1985
) for physics, chemistry and the natural sciences.
37.
M.
Cowles
and
B.
Carlin
,
J. Am. Stat. Assoc.
91
,
883
(
1996
).
38.
R.
Erban
,
T.
Frewen
,
X.
Wang
,
T.
Elston
,
R.
Coifman
,
B.
Nadler
, and
I.
Kevrekidis
,
J. Chem. Phys.
126
,
155103
(
2007
).
39.
A.
Singer
,
R.
Erban
,
I.
Kevrekidis
, and
R.
Coifman
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
16090
(
2009
).
40.
C.
Siettos
,
M.
Graham
, and
I.
Kevrekidis
,
J. Chem. Phy.
118
,
10149
(
2003
).
41.
B.
Alberts
,
A.
Johnson
,
J.
Lewis
,
M.
Raff
,
K.
Roberts
, and
P.
Walter
,
Molecular Biology of the Cell
(
Garland Science
,
New York
,
2008
)
42.
T.
Kepler
and
T.
Elston
,
Biophys. J.
91
,
3116
(
2001
).
43.
W.
E
,
D.
Liu
, and
E.
Vanden-Eijnden
,
J. Comput. Phys.
221
,
158
(
2007
).
44.
C.
Rao
and
A.
Arkin
,
J. Chem. Phys.
118
,
4999
(
2003
).
45.
A.
Gelfand
and
A.
Smith
,
J. Am. Stat. Assoc.
85
,
398
(
1990
).
You do not currently have access to this content.