The time-dependent fluorescence of a model dye molecule in a nanoconfined solvent is used to test approximations based on the dynamic and static linear-response theories and the assumption of Gaussian statistics. Specifically, the results of nonequilibrium molecular-dynamics simulations are compared to approximate expressions involving time correlation functions obtained from equilibrium simulations. Solvation dynamics of a model diatomic dye molecule dissolved in acetonitrile confined in a spherical hydrophobic cavity of radius 12, 15, and 20 Å is used as the test case. Both the time-dependent fluorescence energy, expressed as the normalized dynamic Stokes shift, and the time-dependent position of the dye molecule after excitation are examined. While the dynamic linear-response approximation fails to describe key aspects of the solvation dynamics, assuming Gaussian statistics reproduces the full nonequilibrium simulations well. The implications of these results are discussed.

1.
E. R.
Barthel
,
I. B.
Martini
, and
B. J.
Schwartz
,
J. Phys. Chem. B
105
,
12230
(
2001
).
2.
M. J.
Bedard-Hearn
,
R. E.
Larsen
, and
B. J.
Schwartz
,
J. Phys. Chem. A
107
,
4773
(
2003
).
3.
A. E.
Bragg
,
M. C.
Cavanagh
, and
B. J.
Schwartz
,
Science
321
,
1817
(
2008
).
4.
M. C.
Larsen
and
B. J.
Schwartz
,
J. Chem. Phys.
131
,
154506
(
2009
).
5.
W. J.
Glover
,
R. E.
Larsen
, and
B. J.
Schwartz
,
J. Chem. Phys.
132
,
144102
(
2010
).
6.
A. E.
Bragg
,
W. J.
Glover
, and
B. J.
Schwartz
,
Phys. Rev. Lett.
104
,
233005
(
2010
).
8.
A. C.
Moskun
,
A. E.
Jailaubekov
,
S. E.
Bradforth
,
G. H.
Tao
, and
R. M.
Stratt
,
Science
311
,
1907
(
2006
).
9.
G.
Tao
and
R. M.
Stratt
,
J. Chem. Phys.
125
,
114501
(
2006
).
10.
B. H.
Savitzky
and
R. M.
Stratt
,
J. Phys. Chem. B
112
,
13326
(
2008
).
11.
R.
Kubo
,
M.
Toda
, and
N.
Hashitsume
,
Statistical Physics II. Nonequilibrium Statistical Mechanics
(
Springer-Verlag
,
New York
,
1978
).
12.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic
,
San Diego, CA
,
1986
).
13.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
New York
,
2001
).
14.
T.
Fonseca
and
B. M.
Ladanyi
,
J. Phys. Chem.
95
,
2116
(
1991
).
15.
T.
Fonseca
and
B. M.
Ladanyi
,
J. Mol. Liq.
60
,
1
(
1994
).
16.
M. S.
Skaf
and
B. M.
Ladanyi
,
J. Phys. Chem.
100
,
18258
(
1996
).
17.
V.
Tran
and
B. J.
Schwartz
,
J. Phys. Chem. B
103
,
5570
(
1999
).
18.
D.
Aherne
,
V.
Tran
, and
B. J.
Schwartz
,
J. Phys. Chem. B
104
,
5382
(
2000
).
19.
P. L.
Geissler
and
D.
Chandler
,
J. Chem. Phys.
113
,
9759
(
2000
).
20.
B. B.
Laird
and
W. H.
Thompson
,
J. Chem. Phys.
126
,
211104
(
2007
).
21.
D.
Chandler
,
Introduction to Modern Statistical Mechanics
(
Oxford University Press
,
New York
,
1987
).
22.
L.
Turi
,
P.
Minary
, and
P. J.
Rossky
,
Chem. Phys. Lett.
316
,
465
(
2000
).
23.
D. A.
McQuarrie
,
Statistical Mechanics
(
Harper
,
New York
,
1976
).
24.
M. C.
Wang
and
G. E.
Uhlenbeck
,
Rev. Mod. Phys.
17
,
323
(
1945
).
25.
26.
E. A.
Carter
and
J. T.
Hynes
,
J. Chem. Phys.
94
,
5961
(
1991
).
27.
28.
29.
W.
Bernard
and
H. B.
Callen
,
Rev. Mod. Phys.
31
,
1017
(
1959
).
30.
W. H.
Thompson
,
J. Chem. Phys.
117
,
6618
(
2002
).
31.
W. H.
Thompson
,
J. Chem. Phys.
120
,
8125
(
2004
).
32.
M.
Maroncelli
,
J. Chem. Phys.
94
,
2084
(
1991
).
33.
A.
Warshel
,
Computer Modelling of Chemical Reactions in Proteins and Solution
(
Wiley
,
New York
,
1991
).
34.
W. L.
Jorgensen
and
J. M.
Briggs
,
Mol. Phys.
63
,
547
(
1988
).
35.
P.
Linse
,
J. Chem. Phys.
90
,
4992
(
1989
).
36.
J.
Faeder
and
B. M.
Ladanyi
,
J. Phys. Chem. B
104
,
1033
(
2000
).
37.
R. C.
Weast
, editor,
Handboook of Chemistry and Physics
, 52nd ed. (
The Chemical Rubber Company
,
Cleveland, OH
,
1971
).
38.
The actual densities may be slightly less than these nominal densities because for a fixed cavity size it is not possible to attain an arbitrary density. The density is calculated by reducing the nominal cavity radius by 0.5σwallwall is the effective Lennard-Jones radius of the cavity wall) to approximately account for the excluded volume, a quantity that changes significantly with cavity size.
39.
S. D.
Bond
,
B. J.
Leimkuhler
, and
B. B.
Laird
,
J. Comput. Phys.
151
,
114
(
1999
).
40.
J. M.
Sanz-Serna
and
M. P.
Calvo
,
Numerical Hamiltonian Problems
(
Chapman and Hall
,
New York
,
1994
).
41.
K. R.
Mitchell-Koch
and
W. H.
Thompson
,
J. Phys. Chem. C
111
,
11991
(
2007
).
42.
43.
A.
Nitzan
,
Chemical Dynamics in Condensed Phases
(
Oxford University Press
,
New York
,
2006
).
44.
We note that in Ref. 30 the force constants were incorrectly reported to be different in the ground and excited state for one of the dye molecule positions. In fact they must be identical, as shown in Ref. 45.
45.
M.
Tachiya
,
J. Phys. Chem.
93
,
7050
(
1989
).
You do not currently have access to this content.