A series of quantum molecular dynamics simulations have been performed to investigate the energetic, structural, dynamic, and spectroscopic properties of methanol cluster anions, [(CH3OH)n], (n = 50–500). Consistent with the inference from photo-electron imaging experiments, we find two main localization modes of the excess electron in equilibrated methanol clusters at ∼200 K. The two different localization patterns have strikingly different physical properties, consistent with experimental observations, and are manifest in comparable cluster sizes to those observed. Smaller clusters (n ≤ 128) tend to localize the electron in very weakly bound, diffuse electronic states on the surface of the cluster, while in larger ones the electron is stabilized in solvent cavities, in compact interior-bound states. The interior states exhibit properties that largely resemble and smoothly extrapolate to those simulated for a solvated electron in bulk methanol. The surface electronic states of methanol cluster anions are significantly more weakly bound than the surface states of the anionic water clusters. The key source of the difference is the lack of stabilizing free hydroxyl groups on a relaxed methanol cluster surface. We also provide a mechanistic picture that illustrates the essential role of the interactions of the excess electron with the hydroxyl groups in the dynamic process of the transition of the electron from surface-bound states to interior-bound states.

1.
J. H.
Baxendale
and
P.
Wardman
,
J. Chem. Soc., Faraday Trans. 1
69
,
584
(
1973
).
2.
D. F.
Feng
and
L.
Kevan
,
Chem. Rev.
80
,
1
(
1980
);
3.
F. Y.
Jou
and
G. R.
Freeman
,
Can. J. Chem.
57
,
591
(
1979
);
F. Y.
Jou
and
G. R.
Freeman
,
J. Phys. Chem.
81
,
909
(
1977
).
4.
X.
Shi
,
F. H.
Long
,
H.
Lu
, and
K. B.
Eisenthal
,
J. Phys. Chem.
99
,
6917
(
1995
).
5.
P. K.
Walhout
,
J. C.
Alfano
,
Y.
Kimura
,
C.
Silva
,
P.
Reid
, and
P. F.
Barbara
,
Chem. Phys. Lett.
232
,
135
(
1995
).
6.
C. M.
Stuart
,
M. J.
Tauber
, and
R. A
Mathies
,
J. Phys. Chem. A
111
,
8390
(
2007
).
7.
H.
Shen
,
N.
Kurahashi
,
T.
Horio
,
K.
Sekiguchi
, and
T.
Suzuki
,
Chem. Lett.
39
,
668
(
2010
).
8.
C.
Desfrancois
,
H.
Abdoul-Carime
,
N.
Khefila
,
J. P.
Schermann
,
V.
Brenner
, and
P.
Millie
,
J. Chem. Phys.
102
,
4952
(
1995
).
9.
A.
Kammrath
,
J. R. R.
Verlet
,
G. B.
Griffin
, and
D. M.
Neumark
,
J. Chem. Phys.
125
,
171102
(
2006
).
10.
A.
Kammrath
,
G. B.
Griffin
,
J. R. R.
Verlet
,
R. M.
Young
, and
D. M.
Neumark
,
J. Chem. Phys.
126
,
244306
(
2007
).
11.
R. M.
Young
,
M. A.
Yandell
, and
D. M.
Neumark
,
J. Chem. Phys.
134
,
124311
(
2011
).
12.
D. H.
Paik
,
I.-R.
Lee
,
D.-S.
Yang
,
J. S.
Baskin
, and
A. H.
Zewail
,
Science
306
,
672
(
2004
).
13.
J. R. R.
Verlet
,
A. E.
Bragg
,
A.
Kammrath
,
O.
Cheshnovsky
, and
D. M.
Neumark
,
Science
307
,
93
(
2005
).
14.
L.
Ma
,
K.
Majer
,
F.
Chirot
, and
B. v.
Issendorff
,
J. Chem. Phys.
131
,
144303
(
2009
).
15.
L.
Turi
,
W.-S.
Sheu
, and
P. J.
Rossky
,
Science
309
,
914
(
2005
).
16.
Á.
Madarász
,
P. J.
Rossky
, and
L.
Turi
,
J. Phys. Chem. A
114
,
2331
(
2010
).
17.
Z.
Kotler
,
E.
Neria
, and
A.
Nitzan
,
Comput. Phys. Commun.
63
,
243
(
1991
).
18.
F. A.
Webster
,
P. J.
Rossky
, and
R. A.
Friesner
,
Comput. Phys. Commun.
63
,
494
(
1991
).
19.
A.
Staib
and
D.
Borgis
,
J. Chem. Phys.
103
,
2642
(
1995
).
20.
L.
Turi
,
J. Chem. Phys.
110
,
10364
(
1999
).
21.
J.
Zhu
and
R. I.
Cukier
,
J. Chem. Phys.
98
,
5679
(
1993
).
22.
L.
Turi
,
A.
Mosyak
, and
P. J.
Rossky
,
J. Chem. Phys.
107
,
1970
(
1997
).
23.
A.
Mosyak
,
P. J.
Rossky
, and
L.
Turi
,
Chem. Phys. Lett.
282
,
239
(
1998
).
24.
A.
Mosyak
,
O. V.
Prezhdo
, and
P. J.
Rossky
,
J. Mol. Struct.
485–486
,
545
(
1999
).
25.
P.
Mináry
,
L.
Turi
, and
P. J.
Rossky
,
J. Chem. Phys.
110
,
10953
(
1999
).
26.
L.
Turi
,
P.
Mináry
, and
P. J.
Rossky
,
Chem. Phys. Lett.
316
,
456
(
2000
).
27.
L.
Turi
and
P. J.
Rossky
,
J. Chem. Phys.
120
,
3688
(
2004
).
28.
L.
Mones
and
L.
Turi
,
J. Chem. Phys.
132
,
154507
(
2010
).
29.
L.
Mones
,
P. J.
Rossky
, and
L.
Turi
,
J. Chem. Phys.
133
,
144510
(
2010
).
30.
L.
Turi
,
Á.
Madarász
, and
P. J.
Rossky
,
J. Chem. Phys.
125
,
014308
(
2006
).
31.
U.
Buck
and
F.
Huisken
,
Chem. Rev.
(Washington, DC)
100
,
3863
(
2000
).
32.
M.
Knapp
,
O.
Echt
,
D.
Kreisle
, and
E.
Recknagel
,
J. Phys. Chem.
91
,
2601
(
1987
).
33.
F.
Zappa
,
S.
Denifl
,
I.
Mähr
,
A.
Bacher
,
O.
Echt
,
T. D.
Märk
, and
P.
Scheier
,
J. Am. Chem. Soc
130
,
5573
(
2008
).
34.
Á.
Madarász
,
P. J.
Rossky
, and
L.
Turi
,
J. Chem. Phys.
130
,
124319
(
2009
).
35.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
36.
L.
Turi
,
M.-P.
Gaigeot
,
N.
Levy
, and
D.
Borgis
,
J. Chem. Phys.
114
,
7054
(
2001
).
37.
L.
Turi
and
D.
Borgis
,
J. Chem. Phys.
117
,
6186
(
2002
).
38.
Á.
Madarász
,
P. J.
Rossky
, and
L.
Turi
,
J. Chem. Phys.
126
,
234707
(
2007
).
39.
T.
Frigato
,
J. V.
Vondele
,
B.
Schmidt
,
C.
Schütte
, and
P.
Jungwirth
,
J. Phys. Chem. A
112
,
6125
(
2008
).
40.
O.
Marsalek
,
F.
Uhlig
,
T.
Frigato
,
B.
Schmidt
, and
P.
Jungwirth
,
Phys. Rev. Lett.
105
,
043002
(
2010
).
41.
To check the convergence of surface state calculations, we also performed short simulations with 64 × 64 × 64 grid points in a box of 50 Å length for smaller clusters. The convergence of the interior state calculations was checked for Ref. 28.
42.
Of the surface-state initiated trajectories, in the n = 70 case, the electron became too diffuse to be physical. For this reason, we left this cluster out of the analysis.
43.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
,
J. Chem. Phys.
76
,
637
(
1982
).
44.
The n = 269 case was an exception, where only a 15 ps long trajectory portion with stable surface state behavior was found.
45.
G.
Makov
and
A.
Nitzan
,
J. Phys. Chem.
98
,
3459
(
1994
).
46.
L. D.
Jacobson
and
J. M.
Herbert
,
J. Am. Chem. Soc.
132
,
10000
(
2010
).
You do not currently have access to this content.