Thermostatting methods are discussed in the context of canonical sampling in the presence of driving stochastic forces. Generalisations of the Nosé-Hoover method and Langevin dynamics are introduced which are able to dissipate excess heat introduced by steady Brownian perturbation (without a priori knowledge of its strength) while preserving ergodicity. Implementation and parameter selection are considered. It is demonstrated using numerical experiments that the methods derived can adaptively control the target canonical ensemble in the presence of nonlinear driving perturbations.

1.
G.
Martyna
,
M.
Klein
, and
M.
Tuckerman
,
J. Chem. Phys.
97
(
4
),
2635
(
1992
).
2.
A.
Brünger
,
C. B.
Brooks
, and
M.
Karplus
,
J. Chem. Phys. Lett.
105
(
5
),
495
(
1984
).
3.
B.
Leimkuhler
,
N.
Noorizadeh
, and
F.
Theil
,
J. Stat. Phys.
135
(
2
),
261
(
2009
).
4.
A.
Jones
, “
Quantum Drude oscillators for accurate many-body intermolecular forces
,” Ph.D. dissertation (
University of Edinburgh
,
2010
).
5.
D.
Marx
, “
An introduction to ab initio molecular dynamics simulations
,” in
Computational Nanoscience: Do It Yourself!
, edited by
J.
Grotendorst
,
S.
Blügel
, and
D.
Marx
,
John von Neumann Institute for Computing
,
Jülich
,
NIC Series
, Vol.
31
, pp.
195
244
(
2006
).
6.
C.
Phillips
and
P.
Crozier
,
J. Chem. Phys.
131
,
074701
(
2009
).
7.
A. C.
Brańka
,
Phys. Rev. E
61
,
4769
(
2000
).
8.
S. P. A.
Gill
, “
Nonequilibrium molecular dynamics and multiscale modeling of heat conduction in solids
,” in
Trends in Computational Nanomechanics
,
Challenges and Advances in Computational Chemistry and Physics
Vol.
9
, edited by
T.
Dumitrica
(
Springer
,
Netherlands
,
2010
), pp.
85
134
.
9.
F.
Legoll
,
M.
Luskin
, and
R.
Moeckel
,
Arch. Rational Mech. Anal.
184
,
449
(
2007
).
10.
D.
Quigley
, “
Constant pressure langevin dynamics: Theory and application to the study of phase behaviour in core-softened systems
,” Ph.D. dissertation (
University of York
,
2005
).
11.
G.
Martyna
,
M.
Tuckerman
,
D.
Tobias
, and
M.
Klein
,
Mol. Phys.
87
,
1117
(
1996
).
12.
B.
Oksendahl
,
Stochastic Differential Equations: An Introduction with Applications
, 6th ed. (
Springer
,
New York
,
2010
).
13.
G.
Bussi
and
M.
Parrinello
,
Comput. Phys. Commun.
179
,
26
(
2008
).
14.
A.
Samoletov
,
M. A. J.
Chaplain
, and
C. P.
Dettmann
,
J. Stat. Phys.
128
,
1321
(
2007
).
15.
S. P.
Meyn
and
R. L.
Tweedie
,
Markov Chains and Stochastic Stability
(
Springer-Verlag
,
London
,
1993
).
16.
J. C.
Mattingly
,
A. M.
Stuart
, and
D. J.
Higham
,
Stochastic Proc. Appl.
101
(
2
),
185
(
2002
).
17.
B.
Leimkuhler
,
E.
Noorizadeh
, and
O.
Penrose
,
J. Stat. Phys.
143
,
921
942
(
2011
).
18.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
You do not currently have access to this content.